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SUMMARY

Formation of correctly shaped organs is vital for
normal function. The Drosophila wing has an elon-
gated shape, which has been attributed in part to a
preferential orientation of mitotic spindles along the
proximal-distal axis [1, 2]. Orientation of mitotic
spindles is believed to be a fundamental morphoge-
netic mechanism in multicellular organisms [3–6].
A contribution of spindle orientation to wing shape
was inferred from observations that mutation of
Dachsous-Fat pathway genes results in both rounder
wings and loss of the normal proximal-distal bias in
spindle orientation [1, 2, 7]. To directly evaluate the
potential contribution of spindle orientation to wing
morphogenesis, we assessed the consequences of
loss of theDrosophilaNuMA homologMud, which in-
teracts with the dynein complex and has a conserved
role in spindle orientation [8, 9]. Loss ofMud random-
izes spindle orientation but does not alter wing
shape. Analysis of growth and cell dynamics in devel-
oping discs and in ex vivo culture suggests that
the absence of oriented cell divisions is compen-
sated for by an increased contribution of cell
rearrangements to wing shape. Our results indicate
that oriented cell divisions are not required for
wing morphogenesis, nor are they required for the
morphogenesis of other Drosophila appendages.
Moreover, our results suggest that normal organ
shape is not achieved through locally specifying
and then summing up individual cell behaviors, like
oriented cell division. Instead, wing shape might be
specified through tissue-wide stresses that dictate
an overall arrangement of cells without specifying
the individual cell behaviors needed to achieve it.

RESULTS AND DISCUSSION

Loss of mud Randomizes Spindle Orientation but Does
Not Alter Wing Shape
To evaluate the role of spindle orientation in directing organ

shape, we examined the wings of adult flies mutant for the
Drosophila NuMA homolog mushroom body defect (mud)

[8, 9]. Flies hemizygous for an amorphic allele, mud4, are viable

and have wings that are slightly smaller, but similar in shape,

to the wings of wild-type controls (Figures 1A, 1B, and 1E–1H).

Similarly, adult wings from flies in which mud was knocked

down throughout wing development by expressing a mud

RNAi line in wing cells under nub-Gal4 control appear similar in

shape to control wings and slightly reduced in size (Figures

1C–1E and 1H; quantitation of roundness revealed no difference

in males wings and only a 2% difference in female wings).

Spindle orientation is precisely controlled along two axes in

the developing wing imaginal disc. Spindles are aligned parallel

to the surface of the disc epithelium (perpendicular to the apical-

basal axis), which ensures cell divisions occur within the plane of

the disc. Spindles in most of the developing wing also tend to be

oriented along the proximal distal axis, which in the central part

of the disc is perpendicular to the dorsal-ventral (D-V) compart-

ment boundary (Figures 1I–1L). It has previously been reported

thatmudmutation or RNAi disrupts the normal planar orientation

of mitotic spindles in the wing disc [10, 11] and that mud is

required for alignment of spindles induced by cell shape and

tri-cellular junctions [12]. However, whether loss of mud also

disrupts the normal proximal-distal bias in spindle orientation

in the developing wing has not been reported.

To examine this, we labeled mitotic spindles by using a MiMIC

insertion to create an RFP-tagged allele of themicrotubule-asso-

ciated protein Jupiter [13] and labeled cell junctions using aGFP-

tagged E-cadherin transgene. Wing discs expressing these

fluorescently labeled proteins were dissected from third-instar

larvae, cultured ex vivo, and imaged every 6–8 min on a spinning

disc confocal microscope for 12 h (Figures 1J and 1K; Videos S1

and S2). This analysis was performed using a recently developed

method for ex vivo imaginal disc culture, which facilitates

extended growth in culture and maintains disc patterning and

gene expression, thus enabling dynamic imaging of cell behav-

iors in growing discs for an extended time [14]. The resulting

videos were then segmented to identify mitotic spindles, and

the final spindle orientation for dividing cells within the wing

pouch was identified and measured relative to the D-V boundary

(Figures 1J–1L). For spindles that were tilted toward the apical-

basal axis, we used the projection of these spindles onto the

XY plane. In wild-type wing discs, spindles were preferentially

oriented toward the D-V boundary, consistent with earlier

studies [1, 2, 7]. In contrast, in mud mutant wing discs or wing

discs expressing amudRNAi line, there was no preferred spindle
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Figure 1. Loss of mud Randomizes Spindle Orientation but Does Not Alter Wing Shape

(A–D) Adult wings from (A) w1118, (B) mud4, (C) nub-Gal4 UAS-dcr2, and (D) nub-Gal4 UAS-dcr2 UAS-mud-RNAi flies.

(E) Mean roundness of wings of the indicated genotypes, calculated from 13 (mud4), 16 (wild-type), 19 (female mud RNAi), 12 (female RNAi control), 20 (male mud

RNAi), and 15 (male RNAi control) wings. Significance of differences calculated by t test is indicated.

(F and G) Adult male flies of (F) w1118 and (G) mud4.

(legend continued on next page)
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orientation (Figure 1L). Thus, loss ofmud randomizes spindle ori-

entations in the wing disc along both apical-basal [10, 11] and

planar axes.

mud Mutant Wing Discs Have Oriented Growth without
Oriented Cell Divisions
The observation that wing shape is normal in mud mutant or

RNAi flies, despite randomly oriented spindles, implies that the

normal orientation of cell divisions is not required for wing shape.

We considered the possibility that daughter cells might reorient

along the proximal-distal axis immediately after division but did

not observe this in our live imaging videos. To quantitatively

assess cell division orientation, we used the cell division ne-

matics function of Tissue Analyzer software [15]. This provides

an indication of the preferred cell division orientation throughout

different time points of a live imaging video based on identifica-

tion of daughter cells in videos with a segmented cell membrane

marker. Applying this analysis to wild-type discs expressing

E-cadherin:GFP revealed a preferential dorsal-ventral orienta-

tion of cell divisions, whereas applying this analysis to mud

mutant wing discs revealed no preferred orientation of cell

divisions (Figure 2A).

We also considered the possibility that compensatory mecha-

nisms during pupal development might generate normally

shaped wings despite abnormally oriented growth within the

larval wing disc. To investigate the orientation of growth within

discs, we used the Raeppli technique [16] to label clones of cells

within developing wing discs and examined their growth. The

relative elongation and orientation of labeled clones generated

within mud RNAi discs was then compared to clones generated

within control wing discs. Elongation was quantified by defining

the roundness of each clone, and orientation was defined by

comparing the long axis of each clone to the D-V boundary.

Roundness varies from clone to clone, but the overall distribution

of clone roundness within wild-type or mud RNAi wing discs is

similar (Figures 2B–2D). Clones created within mud RNAi wing

discs also tend to be oriented perpendicular to the D-V bound-

ary, as occurs in wild-type wing discs (Figures 2B, 2C, and 2E).

Thus, wing discs lacking mud retain oriented growth, despite

lacking oriented cell divisions.

We also analyzed the overall size and shape of thewing pouch,

as defined by the inner ring of Wingless (Wg) expression. Wing

discs were examined at time points throughout the third larval

instar (72, 84, 96, 108, and 120 h after egg laying [AEL]). Overall

wing pouch size and shape were similar between wild-type and

mud4 mutant wing discs, although transient differences in size

were detected around mid-third instar (Figures 2F–2I). Alto-

gether, these observations indicate that the overall organization
(H) Mean wing area (in a.u.) for the indicated genotypes. Significance of differenc

(I) Schematic of the wing disc showing the anterior-posterior (AP), dorsal-ventral

(J and K) Snapshots from ex vivo live imaging of control (J) or mud4 (K) wing d

Jupiter:RFP. In images at right, all spindle orientations from a 14-h video are plott

perpendicular (60�–90�), orange identifies spindles 30�–60�, and magenta identifi

(L) Quantitative analyses of spindle orientation with respect to the D-V boundary

5 discs),mud4 (N = 1,722 spindles from 5 discs), nub-Gal4 UAS-dcr2 control (N =

spindles from 3 discs).

Error bars show the SD in results from different discs. The results of chi-square

* P % 0.05; *** P % 0.001; **** P % 0.0001. See also Videos S1 and S2.
of growth within the developing wing disc is unaffected by the

randomization of cell division orientation.

Analysis of Cell Behaviors Contributing to Wing Disc
Shape
To investigate how normally oriented wing growth can occur

despite abolishment of normal division orientation, we analyzed

live imaging videos of wing discs expressing Jupiter:RFP and

E-cad:GFP. Wing discs were dissected from mid-third-instar

larvae (96 h AEL), cultured for 12–14 h, and imaged every

6–8min throughout this time. The resulting videos were then fully

segmented, including manual correction at each time point so

that individual cells could be identified, characterized, and

tracked. Changes in relative disc shape (shear) during culture,

together with the contributions of different cell behaviors to this

shape change, were analyzed using the TissueMiner computa-

tional framework [17]. A key component of this approach in-

volves triangulation of segmented cellular networks to identify

and quantify the contributions of different types of cell behaviors

to tissue shear [17, 18] (Figure 3A).

In the coordinate system used to measure shear, positive

shear indicates shear parallel to thewing D-V boundary, whereas

negative shear indicates shear perpendicular to the D-V bound-

ary (Figure 3B). Analysis of the wing pouch regions of three wild-

type wing discs revealed an accumulation of negative shear over

time, indicating that shear perpendicular to the D-V boundary

occurs. Analysis of cell dynamics revealed that three cell behav-

iors account for most of this shear: oriented cell divisions; T1

transitions (cell rearrangements); and cell elongation (Figure 3C).

The respective contributions of these different cellular processes

vary from disc to disc. The results of our analysis are similar to

those of Dye et al. [14], who developed the methods for long-

term disc culture and analysis that we used, both in terms of

the total shear detected and the contributions of different cellular

processes to this shear.

We performed the same analysis on five mud mutant wing

discs. As in wild-type,mudmutant discs proliferated throughout

12 h of ex vivo culture, although, on average, fewer cell divisions

were detected (Figure S1A). Direct observation revealed that, in

a fraction of cell divisions (�15%), a spindle orientation perpen-

dicular to the plane of the disc epithelium results in the basal

extrusion of one of the daughter cells. In most cases, these

extruded daughter cells are permanently lost and apoptotic cells

can be detected basal to the disc epithelium ofmudmutant discs

(Figure S1C), although, in a few cases (9% of these perpendic-

ular divisions), the more basal cell later re-enters the disc

epithelium. As in wild-type, mud mutant wings cultured ex vivo

undergo a negative shear that accumulates over time (Figures
es calculated by t test is indicated.

(DV), and distal-proximal (PD) regions.

iscs, with cell junctions labeled by E-cadherin:GFP and spindles labeled by

ed onto one image. Each line represents one spindle. Yellow identifies spindles

es spindles parallel (0�–30�) to the D-V boundary.

in cultured wing discs from wild-type control (w1118; N = 1,797 spindles from

643 spindles from 3 discs), and nub-Gal4 UASdcr2 UAS-mud-RNAi (N = 1,088

tests of comparisons of the distributions are indicated in green. ns, P > 0.05;
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3C and S1D), although the total shear observed in mud mutant

discs was more variable and overall less than observed in wild-

type discs. As the growth of mud wing discs and wing pouch

shape, are similar to wild-type discs in vivo (Figures 2F–2I),

mud discs might be more sensitive than wild-type discs to

ex vivo culture, but they nonetheless exhibit cell proliferation

and accumulation of shear throughout ex vivo culture (Figure 3).

Consistentwith the randomizationof division orientation inmud

mutants, cell division did not contribute significantly to the total

shear observed (Figures 3 and S1). Cell elongation also contrib-

uted less to the total shear in three out of fivemudmutant discs,

which was unexpected but might suggest that randomization of

spindle orientation can affect local stresses that influence cell

shape. To complement our analysis of cell behaviors in culture,

we also examined cell shapes and orientations in fixed discs at

different times throughout third instar, and quantified the contri-

bution of cell elongation to wing disc shape [14]. This revealed a

similar overall contribution of cell elongation and orientation to

wing shape betweenwild-type andmudmutant discs (Figure 3D).

This contribution is positive (indicating a contribution of cell shape

to elongation along the D-V boundary), but it declines over time

[14, 19]. Our live imaging videos begin around 96 h AEL and run

for 12 h. In fixed discs, we observed a greater decrease in the

cell elongation contribution in wild-type discs as compared to

mud4 mutant discs from the 96- to 108-h time points, but this

difference was not statistically significant (Figure 3D).

In contrast to the lack of significant contribution from cell divi-

sion, T1 transitions made a substantial contribution to the total

shear observed inmud4 mutant discs and a greater contribution

to disc shear than in wild-type wing discs (Figures 3C and S1D).

Thus, we infer that the lack of contribution of oriented cell divi-

sions to wing disc shear in mud mutant discs and to final wing

shape in adult flies is compensated for at least in part by an

increased contribution of T1 transitions. Although the contribu-

tion of T1 transitions to wing disc shear is greater inmudmutant

wing discs, the total number of T1 transitions that occur is similar

between wild-type and mud mutants (Figure 3E; Videos S3 and

S4). This suggests that there is a distinct bias in the average

orientation of T1 transitions in mud mutants as compared to

wild-type wing discs.

Generation of Wing Shape
Our analysis of mud mutants establishes that oriented cell divi-

sions do not make an essential contribution to normal wing

morphogenesis. They occur, but they are unnecessary. More-

over, as mud4 mutants are viable and have a normal external

morphology (Figures 1F and 1G), it appears that oriented cell di-
Figure 2. Normally Oriented Growth in the Absence of mud

(A) Analysis of cell division nematics of three wild-type and three mud4 live im

orientation at different time points throughout 12 h of a live imaging video (key a

(B and C) Examples of labeled clones (blue, cyan, red, and yellow; labeled using

(D) Analysis of the shape of labeled clones shows a similar distribution of clone

calculated by t test is indicated; N = 101 clones (control) and 87 clones (mud RN

(E) Analysis of the orientation of clones shows a similar bias in clone orientations p

wing discs. The results of chi-square tests of comparisons of the distributions ar

(F and G) Images of mud4 (G) and wild-type (F) wing discs at 72, 84, 96, 108, an

(H) The roundness of the wing pouch region (defined by Wg expression) is simila

(I) Comparison of the area of the wing pouch between mud4 and wild-type.

Significance of differences calculated by t test is indicated; N = 5 discs for each
visions are not required for morphogenesis of any part of the

adult Drosophila cuticle and appendages. Suggestions that ori-

ented cell divisions drive oriented growth hypothesize that local,

individual cell behaviors (e.g., oriented cell division) are specified

and then summed to determine the shape of an organ (Figure 4A).

For example, in the Drosophila wing, it was proposed that

‘‘tissues can grow in a particular direction by controlling the

orientation of cell division’’ [1]. Our observations instead suggest

that the overall shape of the organ can be determined without

specifying the cell behaviors needed to achieve it. In this view,

oriented cell divisions could occur as a response to mechanisms

that orient growth rather than being a cause of oriented growth.

One possible mediator of such a mechanism is mechanical

stress. Cells subject to external forces can exhibit a variety of

stress relaxation behaviors, including changes in cell shape, ori-

ented divisions, and cell rearrangements [19–22]. A stress-based

mechanism for wing morphogenesis could thus account for var-

iations in the contributions of different cell behaviors to the total

shear of wing discs cultured ex vivo [14], as well as for the contin-

uation of normal morphogenesis when one of thesemechanisms

(oriented cell divisions) is abolished. Similarly, during zebrafish

epiboly, tension orients cell divisions by orienting cell elongation.

Epiboly can still proceed when cell division orientations are

randomized but cell fusions increase [21].

Although the precise mechanism by which wing shape is

specified is not yet clear, genetically, it depends upon the

Dachsous-Fat pathway, as formation of rounder wings is a

characteristic phenotype of mutations in genes of this pathway

[23–29]. The organization of Dachsous-Fat polarity could estab-

lish tissue-wide stresses through controlling the localization of

the unconventional myosin Dachs, as Dachs localization is

controlled by Ds-Fat signaling [26] and Dachs can influence

junctional tension [1, 30, 31]. These tissue-wide stresses could

influence the overall shape of the growing wing disc and ulti-

mately the adult wing without specifying the particular cellular

behaviors by which it is achieved (Figure 4B). Consistent with

this possibility, the normal proximal-distal bias in Dachs and

Myosin II (Zipper, Zip) localization on junctions is maintained in

mud mutant wing discs (Figures 4C–4F and S2).
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING
aging videos. Different-colored lines indicate the predominant cell division

t bottom right).

Raeppli technique) in wild-type (B) and mud RNAi (C) wing discs.

roundness in control and mud RNAi wing discs. Significance of differences

Ai).

erpendicular rather than parallel to the D-V boundary in control and mud RNAi

e indicated; N = 97 clones (control) and 81 clones (mud RNAi).

d 120 h AEL.

r between mud4 and wild-type at all stages.

time point of each genotype. ns, p > 0.05; * p % 0.05.
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Figure 3. Cellular Components of Tissue Shear in mud Mutants

(A) Illustrations of different types of cell dynamics that can contribute to tissue sh
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Figure 4. Relating Cell Behaviors to Wing Shape

(A and B) Cartoons illustrating two alternative mechanisms for controlling morphogenesis.

(A) Organ shape is generated by specifying and then summing individual cell behaviors.

(B) Organ shape is generated by defining a ‘‘morphogenetic space’’ that can be filled through a variety of cell behaviors, whose contributions are not individually

defined and may vary in different animals.

(C–F) Examples of wing discs expressing GFP-tagged Myosin II heavy chain (Zip; C and D) or Dachs (E and F) in wild-type control (C and E) or mud4 mutant

(D and F) males. Red lines superimposed on the images indicate anisotropy of junctional Zip or Dachs within each cell, with the orientation indicating the axis of

anisotropy and the length indicating the magnitude of anisotropy.

See also Figure S2.
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Anti-wingless DSHB RRID: AB_528512
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Experimental Models: Organisms/Strains
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Fly: Jupiter:RFP This manuscript N/A
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Fly: dachs:GFP [31] N/A
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confo
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact Kenneth D. Irvine (irvine@

waksman.rutgers.edu).
e1 Current Biology 29, 1–9.e1–e3, March 4, 2019

mailto:irvine@waksman.rutgers.edu
mailto:irvine@waksman.rutgers.edu
http://mathworks.com
https://fiji.sc
https://media.nature.com/original/nature-assets/nmeth/journal/v12/n12/extref/nmeth.3648-S2.zip
https://media.nature.com/original/nature-assets/nmeth/journal/v12/n12/extref/nmeth.3648-S2.zip
http://ilastik.org/index.html
https://www.graphpad.com/scientific-software/%20prism/
https://www.r-project.org
https://grr.gred-clermont.fr/labmirouse/software/WebPA/index.html
https://github.com/mpicbg-scicomp/tissue_miner
https://github.com/alegoth/Spindle-Orientation-Analysis
https://www.leica-microsystems.com/
http://www.perkinelmer.com/lab-products-and-services/cellular-imaging/confocal-imaging.html
http://www.perkinelmer.com/lab-products-and-services/cellular-imaging/confocal-imaging.html


Please cite this article in press as: Zhou et al., Oriented Cell Divisions Are Not Required for Drosophila Wing Shape, Current Biology (2019), https://
doi.org/10.1016/j.cub.2019.01.044
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Unless otherwise indicated, flies were raised on standard medium at 25�C. w1118 are used as control flies. Ubi-Ecad:GFP was ob-

tained from the Kyoto stock center. Jupitor:RFP was created from the MiMIC line JupiterMI00919 by insertion of the TagRFP 3xHA

cassette [39] using services of BestGene. P(w[+mC] = Raeppli-CAAX)67E/TM6B for Reappli and other flies were obtained from

the BloomingtonDrosophila stock center. Both male and female flies were used. For measurements of wing area, males and females

were analyzed separately at 1 day after eclosion. The information for all fly lines is described in the Key Resources Table.

METHOD DETAILS

Quantification of adult wings
Adult wing phenotypes of mud mutants were scored by comparing mud4 hemizygous and w1118 males. Adult wing phenotypes

of mud RNAi were scored by crossing nub-Gal4 UAS-dcr2 females to UAS-RNAi mud /CyO,GFP or If/CyO,GFP (control) males.

All wings were photographed at the same magnification. For quantification, at least 12 wings per genotype were manually traced

in Fiji (NIH ImageJ) and then analyzed using area and shape descriptors measure functions of Fiji. This calculates roundness

using 4 x Area/(p x [Major axis]2).

Examination and quantitation of fixed wing discs
y w; Ubi-Ecad:GFP/CyO,GFP; Jupitor:RFP/TM6B males were crossed with either mud4 or w1118 females. Wing discs from male

larvae at specified time points after egg laying (AEL) were dissected and fixed in 4% paraformaldehyde (Fisher, T353-500)

for 12 min at room temperature, and stained using mouse anti-Wg (1:400, DSHB) and donkey anti-mouse IgG:Cy5 (Jackson

ImmunoResearch). Wing discs were mounted on a microscope slide and images captured on a Leica SP8 confocal microscope.

Thewing pouchwas defined by anti-Wg staining, and quantified bymanually tracing this region in Fiji, and calaculating the area and

roundness using the Area and Shape descriptors measurement functions of Fiji.

For cell elongation analysis, the E-cad:GFP channel from confocal images of fixed wing discs were processed with the ImSAnE

MATLAB script [35] to project the apical plane onto a 2D surface based on maximal brightness of the E-Cadherin-GFP signal.

The E-cad signal in the central pouch region was then segmented using Tissue Analyzer. Tissue Miner was then used to plot

the xx component of cell elongation averaged by the area for each disc and the results were plotted using Graphpad Prism software.

Quantification of Zip and Dachs anisotropy
zip:GFP or dachs:GFP males were crossed with either mud4 or w1118 females. Wing discs from male larvae at 96 h AEL were

dissected and fixed in 4% paraformaldehyde (Fisher, T353-500) for 12 min at room temperature, and stained using rat anti-E-cad

(1:400, DSHB) and donkey anti-rat IgG:Cy5 (Jackson ImmunoResearch). Wing discs were mounted on a microscope slide and

images captured on a Leica SP8 confocal microscope. For quantification of protein anisotropy, confocal image stacks were first pro-

cessed with the ImSAnE MATLAB script to project the apical surface onto a 2D plane based on maximal brightness of the E-Cad.

Cells were then segmented based on E-Cad staining and the anisotropy of Zip:GFP or Dachs:GFP for each cell was characterized

using TissueAnalyzer software.

Quantification of Raeppli clones
Raeppli clones were generated by crossing y w; nub-Gal4 UAS-dcr2/CyO,GFP; P(w[+mC] = Raeppli-CAAX)67E/TM6B females to

either y w hs-Flp;UAS-RNAi-mud/CyO,GFP; Ubi-Ecad:GFP/TM6B or y w hs-Flp ;If/CyO,GFP; Ubi-Ecad:GFP/TM6B (control) males

for 4 h and thenmaintaining them at 29�C. Larvaewere heat shocked at 90 h AEL and dissected at 120 h AEL. To quantify clone shape

and orientation, clone boundaries were traced manually and measured using the Shape descriptors functions of Fiji.

Live imaging and analysis of wing discs cultured ex vivo

For live imaging ofmudmutants, y w; Ubi-Ecad:GFP/CyO,GFP; Jupitor:RFP/TM6Bmale flies were crossed with eithermud4 orw1118

(control) females and then male larval progeny were examined. For live imaging of mud RNAi knock-down, nub-Gal4 UAS-dcr2 /

CyO,GFP; Ubi-Ecad:GFP/TM6B females were crossed to either UAS-RNAi mud /CyO,GFP; Jupitor:RFP/TM6B or If/CyO,GFP;

Jupitor:RFP/TM6B (control) males. Wing disc culture was based on the procedure of Dye et al. [14]. A stock medium was prepared

using Grace’s medium (Sigma, G9771) without sodium bicarbonate but with the addition of 5mMBis-Tris and the pHwas adjusted to

6.6-6.7 at room temperature. This was stored at 4�C for less than amonth. Before every experiment, we added 5% fetal bovine serum

(FBS; ThermoFisher, 10082147), Penicillin-Streptomycin (Thermo-Fisher, #15070063, 100 3 stock solution) and 10 nM 20-hydrox-

yecdysone (Sigma, H5142) to the medium. Larvae at 96h AEL were floated on 25% sucrose and transferred into glass dishes with

culture medium. Larvae of the desired genotype were selected and sterilized in 70% ethanol for 1-2 mins. We then drew a circle

on the glass bottom of a 35-mm glass-bottomed Petri dish (MatTek, P35G-0-14-C) using glue from tape (Tesa, 5388). Wing discs

were dissected out of larvae and transferred into this Petri dish. Then we covered the discs with cyclopore polycarbonate membrane

(GE health, 7060-2513) and glued it to the glass bottom to immobilize discs. Live wing discs were then imaged using a Perkin Elmer

Ultraview spinning disc confocal microscope every 6-8 mins for 12 hours.
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For analysis of spindle orientation, the Jupiter:RFP channel was segmented using Ilastik. Spindle orientation was determined using

a custom MATLAB script, when the spindles merge into one spindle line, which occurs after spindle rotations have completed. The

orientations of spindles relative to the D-V boundary were calculated using Excel.

For analysis of tissue shear and its component cellular contributions, confocal image stacks were first processed with the ImSAnE

MATLAB script to project the apical surface onto a 2D plane based on maximal brightness of the E-Cadherin-GFP signal. Segmen-

tation and cell tracking was then performed on the central wing pouch of the projected time lapse images using Tissue Analyzer.

Manual correction of segmentation was required for every time frame of each video, which typically takes 2weeks per video. Analysis

of tissue shear and its cellular contributions was calculated using Tissue Miner.

QUANTIFICATION AND STATISTICAL ANALYSIS

For quantification of adult wings, at least 12 wings per genotype were manually traced in Fiji (NIH ImageJ) and then analyzed using

area and shape descriptors measure functions of Fiji. Statistical significance of pairwise comparisons was assessed by t test using

Prism 7 software (GraphPad). For quantification of fixed wing discs, the wing pouch was defined by anti-Wg staining, and quantified

by manually tracing this region in Fiji, and calculating the area and roundness using the Area and Shape descriptors measurement

functions of Fiji. Statistical significance of pairwise comparisons for each time point was assessed by t test using Prism 7 software

(GraphPad). For quantification of Zip and Dachs anisotropy, the anisotropy of Zip:GFP or Dachs:GFP for each cell was characterized

using TissueAnalyzer software. Statistical analysis was performed using Chi square in R (ver.3.4.1) with R stats package. To quantify

Reappli clone shape and orientation, clone boundaries were tracedmanually andmeasured using the Shape descriptors functions of

Fiji. Statistical significance of pairwise comparisons was assessed by t test using Prism 7 software (GraphPad). For quantification of

spindle orientation, the orientations of spindles relative to the D-V boundary were calculated using a custom MATLAB script. Statis-

tical analysis was performed using Chi square in R (ver.3.4.1) with R stats package. For each dataset, details of n-values can be found

in the corresponding figure legends.

DATA AND SOFTWARE AVAILABILITY

A customMATLAB script was used to determine the final orientation ofmitotic spindles in live imaging videos based on segmentation

of the Jup:RFP stain. This script is available at https://github.com/alegoth/Spindle-Orientation-Analysis
e3 Current Biology 29, 1–9.e1–e3, March 4, 2019
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Figure S1. Additional analysis of cell behavior in wing discs, related to Figure 3 
A) Scatter plot showing the number of cell divisions detected based on segmentation of cell 
junctions over 12h of ex vivo culture in three wild-type and five mud mutant videos. B,C) Exam-
ples of wing discs from wild-type control (B) and mud mutant (C) wing discs, stained for DNA 
(blue) and cleaved caspase (green). (D) Analysis of accumulated shear (blue) and the contribution 
of different cellular processes to this shear (key at bottom) in two additional mud4 discs from 2 - 
12 h of culture, averaged over the entire tracked region. 
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Figure S2. Analysis of Zip and Dachs polarity, related to Figure 4 
Quantitation of the polarity vectors for Zip:GFP and Dachs:GFP in indi-
vidual cells, binned into 15 degree increments relative to the D-V bound-
ary, from five discs per genotype, with 7000-10,000 cells analyzed per 
genotype. Error bars indicate standard deviation between discs. Greens 
bars indicate the results of Chi square analysis.
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