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SUMMARY

Analyzing the spatial organization of molecules in
cells and tissues is a cornerstone of biological
research and clinical practice. However, despite
enormous progress in molecular profiling of cellular
constituents, spatially mapping them remains a
disjointed and specialized machinery-intensive pro-
cess, relying on either light microscopy or direct
physical registration. Here, we demonstrate DNA mi-
croscopy, a distinct imaging modality for scalable,
optics-free mapping of relative biomolecule posi-
tions. In DNA microscopy of transcripts, transcript
molecules are tagged in situ with randomized nucle-
otides, labeling each molecule uniquely. A second
in situ reaction then amplifies the tagged molecules,
concatenates the resulting copies, and adds new
randomized nucleotides to uniquely label each
concatenation event. An algorithm decodes molecu-
lar proximities from these concatenated sequences
and infers physical images of the original transcripts
at cellular resolution with precise sequence informa-
tion. Because its imaging power derives entirely from
diffusive molecular dynamics, DNA microscopy con-
stitutes a chemically encoded microscopy system.
INTRODUCTION

The spatial organization of cells with unique gene expression

patterns within tissues is essential to their function and is at

the foundation of differentiation, specialization, and physiology

in higher organisms. For example, neurons of the CNS express

protocadherins and neurexins in highly diverse spatial patterns

across neural tissue that govern cells’ intrinsic states,

morphology, and synaptic connectivity (Lefebvre et al., 2012;

Schreiner et al., 2014). Spatial co-localization of B- and T-lym-

phocytes in the immune system that express diverse immune re-
ceptors—genetically distinct due to somaticmutations—permits

signaling feedback critical for immune clonal selection (Victora

and Nussenzweig, 2012). In the gut, epithelial, immune, endo-

crine, and neural cells are spatially distributed in specific ways

that impact how we sense and respond to the environment,

with implications for autoimmune disease, food allergies, and

cancer. In the tissue context of disease, cell microenvironments

may be critical for tumorigenesis (Herishanu et al., 2011; Joyce

and Fearon, 2015), immune surveillance and dysfunction, inva-

sion, and metastasis. In tumors in particular, genes with different

mutations are expressed in distinct cells, impacting tumorigen-

esis and leading to neoantigens presented to the immune sys-

tem (Schumacher and Schreiber, 2015).

Although imaging of cells and tissues has been a cornerstone

of biology ever since cells were discovered under the light micro-

scope centuries ago, advances in microscopy have to date

largely not incorporated the growing capability to make precise

measurements of genomic sequences. While microscopy illumi-

nates spatial detail, it does not capture genetic information un-

less it is performed in tandem with separate genetic assays.

Conversely, genomic and transcriptomic sequencing do not

inherently capture spatial details.

One strategy to bridge this gap by spatially quantifying genes

of known sequence is hybridization methods (Lubeck et al.,

2014; Chen et al., 2015; Moffitt et al., 2016). However, somatic

mutation, stochastic gene splicing, and other forms of single-

nucleotide variation that is not known a priori play a central

role in the function and pathology of spatially complex systems

(such as the nervous, immune, gastrointestinal, and tumor exam-

ples above). As a result, single-nucleotide sequencing and

microscopy must be fully integrated to ultimately understand

these systems. Recent approaches to do so rely on optical read-

outs that require elaborate experimental systems (Lee et al.,

2014), physical registration and capture of molecules on grids

(Junker et al., 2014; Ståhl et al., 2016), or an assumption of sim-

ilarity among multiple samples so that distinct experiments per-

formed on distinct specimens may be correlated (Satija et al.,

2015; Achim et al., 2015). These approaches closely mirror

the two ways in which microscopic images have been acquired

to date: either (1) detecting electromagnetic radiation (e.g.,
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Figure 1. DNA Microscopy

(A and B) Method steps. Cells are fixed and cDNA is synthesized for beacon and target transcripts with randomized nucleotides (UMIs), labeling each molecule

uniquely (A). In situ amplification of UMI-tagged cDNA directs the formation of concatemer products between beacon and target copies (B). The overhang-

primers responsible for concatenation further label each concatenation event uniquely with randomized nucleotides, generating unique event identifiers (UEIs).

(C and D) Paired-end sequencing generates readouts including a beacon-UMI, a target-UMI, the UEI that associates them, and the target gene insert (C). A bird’s-

eye view of the experiment (D) shows the manner in which the DNAmicroscopy reaction encodes spatial location. Diffusing and amplifying clouds of UMI-tagged

DNA overlap to extents that are determined by the proximity of their centers.

(E and F) UEIs between pairs of UMIs occur at frequencies determined by the degree of diffusion cloud overlap. These frequencies are read out by DNA

sequencing, and inserted into a UEI matrix (E) that is then used to infer original UMI positions (F).

See also Figures S1 and S2.
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photons or electrons) that has interacted with or been emitted by

a sample, or (2) interrogating known locations by physical con-

tact or ablation (e.g., dissection).

Here, we propose a distinct third modality for microscopy

which requires neither optics nor physical capture from known

coordinates but rather relies on image reconstruction from the

relative physical proximity of individual molecules (Figure 1)

and focuses on obtaining precise genetic information at high

spatial resolution. This principle, of determining coordinates

not in relation to an absolute coordinate system but instead in

relation to one another, has previously been used in other con-

texts. For example, in the theory of sensor localization distances

between points are explicitly measured and then their relative

positions are estimated from these distances (Aspnes et al.,

2006). Numerical work has further shown that such estimates

can be made using sparse and noisy measurements (Singer,

2008). Here, we build on and adapt the same theoretical concept

of ‘‘point-to-point communication’’ through biochemistry to
2 Cell 178, 1–13, June 27, 2019
allow position reconstruction from co-localization data of bio-

molecules to demonstrate a novel form of microscopy, called

DNA microscopy. DNA microscopy reconstructs the positions

of molecules from the stochastic output of a stand-alone chem-

ical reaction. We confirm that DNA microscopy is able to resolve

the 2D physical dimensionality of a specimen, and then demon-

strate that it is able to accurately reconstruct a multicellular

ensemble de novo without optics or any prior knowledge of

how biological specimens are organized. Finally, we demon-

strate the ability of DNA microscopy to resolve and segment in-

dividual cells for transcriptional analysis.

RESULTS

Principle of DNAMicroscopy for Spatio-genetic Imaging
DNA microscopy generates images by first randomly tagging in-

dividual DNA or RNA molecules with DNA-molecular identifiers.

Each deposited DNA-molecular identifier then ‘‘communicates’’



Please cite this article in press as: Weinstein et al., DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reac-
tion, Cell (2019), https://doi.org/10.1016/j.cell.2019.05.019
with its neighbors through two parallel processes. The first pro-

cess broadcasts amplifying copies of DNA-molecular identifiers

to neighbors in its vicinity via diffusion. The second process

encodes the proximity between the centers of overlapping mo-

lecular diffusion clouds: DNA-molecular identifiers undergo

concatenation if they belong to diffusion clouds that overlap.

Finally, an algorithm infers from these association rates the rela-

tive positions of all original molecules.

DNAmicroscopy is premised on the notion that DNA can func-

tion as an imaging medium in a manner equivalent to light. In the

same way that light microscopy images molecules that interact

with photons (either due to diffraction or scattering or because

these molecules emit photons themselves) and encodes these

images in the wavelengths and directions of these photons,

DNA microscopy images molecules that interact with DNA

(including DNA, RNA, or molecules that have been tagged with

either DNA or RNA) and encodes these images in the DNA

sequence products of a chemical reaction.

With this analogy in mind, we can imagine superposing two

distinct physical processes: a fluorophore radially emitting pho-

tons at a specific fluorescence wavelength, and a DNAmolecule

with a specific sequence undergoing PCR amplification, and its

copies diffusing radially. Optical microscopes use lenses to

ensure that photons hitting a detector or the human eye will

retain some information regarding their point of origin, based

onwhere they hit. However, the ‘‘soup’’ of DNAmolecules gener-

ated in a DNA microscopy reaction does not afford this luxury.

We therefore need a different way to distinguish the identities

of point sources so that all data are encoded into the DNA itself.

To molecularly distinguish point sources we rely on unique

molecular identifiers, or UMIs (Kinde et al., 2011), consisting of

randomized bases that tag a molecule before any copy of it

has beenmade (Figure 1A). Because the diversity of UMIs scales

exponentially with their length, we have high confidence that

when one long UMI tags a molecule, no other molecule in the

rest of that sample has been tagged with that same long UMI.

We can now use overlap extension PCR to concatenate the

diffusing and amplifying copies of these UMIs (with any biolog-

ical DNA sequences they tag simply carried along). The rate at

which they concatenate will reflect the distance between their

points of origin.

However, once we sequence the final DNA products, we are

still left with the problem of how to quantitatively read out these

concatenation rates from DNA sequence alone. Using read-

abundances belonging to concatenated DNA products carries

serious drawbacks. For example, trace cross-contamination be-

tween samples could easily introduce artifactual UMI-UMI asso-

ciations, and biases in downstream DNA library preparation

could heavily distort association frequencies. Most serious,

however, is PCR chimerization: any ex situ amplification of the

DNA library would necessarily introduce template-switching at

some rate that would corrupt the data.

We reasoned that if the overlap extension primers contained

randomized bases that did not participate in priming themselves,

then although each priming event would result in replacement of

this randomized sequence, each overlap extension event would

fix the new bases in between the now-concatenated sequences

(Figure 1B). The concatenated sequences would then carry
these randomized bases forward, intact, as they amplified.

These bases would from then on be a unique record of that indi-

vidual concatenation event. We called these new concatenated

randomized sequences unique event identifiers, or UEIs, and

used them to encode molecular positions into the DNA micro-

scopy reaction.

Experimental Assay for DNA Microscopy to Encode
Relative Positions of Molecules in Cells
To demonstrate DNA microscopy, we aimed to image tran-

scripts belonging to a mixed population of two co-cultured

human cell lines, GFP-expressing MDA-MB-231 cells and

RFP-expressing BT-549 cells. As an initial proof of concept,

we aimed to recover images that appear cell-like and where

GFP and RFP transcripts are positioned in mutually exclusive

cells, whereas GAPDH and ACTB, expressed in both cell lines,

are ubiquitous.

In the first step of the experiment, we tag cDNA synthesized

in situ with UMIs. We designed reaction chambers to both

grow cells and perform all reactions (Figures S1A–S1C; STAR

Methods). We cultured the cells, and, following fixation and per-

meabilization, synthesized cDNA by reverse transcription from

GFP, RFP, GAPDH, and ACTB gene transcripts (Tables S1 and

S2), with primers tagged with 29-nt long UMIs (Figures 1A and

S1D). Notably, we designed the reaction to distinguish two types

of UMI-tagged cDNA molecules: ‘‘beacons,’’ synthesized from

ACTB (chosen as a universally expressed gene whose sequence

would not be analyzed in later stages), and ‘‘targets’’ (everything

else). We achieved this distinction between beacon and target

amplicons by the artificial sequence-adapters assigned to the

primers annealing to each.

In the second step of the experiment, we allow beacon-cDNA

and target-cDNA molecules, along with the UMIs that tag them,

to amplify, diffuse, and concatenate in situ in a manner that

generates a new UEI distinct for each concatenation event

(Figures 1B and S1D) through overlap-extension PCR (Turchani-

nova et al., 2013). By design, target amplicon-products will

only concatenate to beacon amplicon-products, thereby pre-

venting self-reaction. The middle of each overlap-extension

primer includes 10 randomized nucleotides, such that each

new concatenation event generates a new 20-nt UEI. Paired-

end sequencing of the final concatenated products generates

reads each containing a beacon UMI, a target UMI, and a UEI

associating them (Figure 1C).

The key to DNAmicroscopy is that because UEI formation is a

second order reaction involving two UMI-tagged PCR ampli-

cons, UEI counts are driven by the co-localization of UMI con-

centrations, and thus contain information on the proximity

between the physical points at which each UMI began to amplify

(Figure 1D). In particular, as UMI-tagged cDNA amplifies and dif-

fuses in the form of clouds of clonal sequences that overlap to

varying extents, the degree of overlap (Figure 1D, circle intersec-

tion)—and thus the probability of concatenation and UEI forma-

tion—depends on the proximity of the original (un-amplified)

cDNA molecules (Figure 1D, small dark circles). UMI-diffusion

clouds with greater overlap generate more concatemers or

UEIs, whereas those clouds with less overlap generate fewer

UEIs. Although individual diffusion cloudsmay differ in form, their
Cell 178, 1–13, June 27, 2019 3
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collective statistical properties will nevertheless allow for original

UMI coordinates to be inferred by consensus, given the

constraint that positions must occupy the low (two- or three-)

dimensionality of physical space.

To obtain reliable estimates of UEIs between every pair of

UMIs, we must address sources of noise, such as sequencing

error. We cluster beacon-UMIs, target-UMIs, and UEIs by sepa-

rately identifying ‘‘peaks’’ in read-abundances using a log-linear

time clustering algorithm (Figure S2A; STAR Methods) in a

manner analogous to watershed image segmentation, but in

the space of sequences. For target UMIs, this allows us to aggre-

gate biological gene sequences originating from single target

molecules and achieve low error rates (0.1%–0.3%/bp across

�100 bp) by taking a consensus of the associated reads (Fig-

ure S2B). We then assign each identified UEI a single consensus

beacon-UMI/target-UMI pair based on read-number plurality,

and prune the data (by eliminating UMIs associating with only

one UEI) to form a sparse matrix whose elements contain integer

counts of UEIs pairing each beacon-UMI (matrix rows) and each

target-UMI (matrix columns) (Figure 1E; STAR Methods). The re-

sulting UEI matrices, containing on the order of 105�106 total

UMIs among which we estimate <1/1,000 false-positives, have

on average �10 UEIs per UMI (Figure S3; Tables S3 and S4)

and form the datasets upon which we built an engine for image

inference.

A Two-Part Computational Strategy to Infer DNA
Microscopy Images
Next, we developed an algorithmic approach to use UEI preva-

lence to infer UMI proximity and reconstruct an image of the orig-

inal sample and its transcripts (Figure 1F). We follow a two-step

approach. We first partitioned the data into smaller subsets to

gauge how well local information between UMIs had been en-

coded into the UEI matrix. This entailed applying spectral graph

theory (in a manner agnostic to the physics of the experiment) to

the problem of cutting the datamatrix into highly connected sub-

matrices, allowing us to both analyze and visualize local struc-

ture and dimensionality. We then devise a more general solution

to achieve DNA microscopy inference over large length scales.

To do this, we constructed a physical model that used our pre-

liminary linear analysis of the data matrix to constrain a non-

linear maximization of the probability of observing the DNA

microscopy data given underlying molecular coordinates.

A ‘‘Zoom’’ Function Infers Local Spatial Encodings from
UEI Matrices
We first appreciate that if the UEI matrix had successfully en-

coded relative UMI coordinates, these coordinates would be re-

flected in the rows and columns of the matrix. The matrix rows

and columns would span a space having a dimensionality

scaling with the total number of UMIs. However, if they encoded

UMI coordinates within a sample, they would collectively sweep

out a curve of far smaller dimensionality, only equal to the phys-

ical dimensionality of the sample.

As a toy example, consider a comparison between three sys-

tems in which a single target UMI (‘‘2’’) is in each of three posi-

tions in one dimension relative to two beacon UMIs (‘‘1’’ and

‘‘3’’) with which it forms UEIs (Figure 2A). The target UMI begins
4 Cell 178, 1–13, June 27, 2019
closest to one of the two beacon UMIs, and as a result, its diffu-

sion cloud overlaps most with that beacon UMI’s diffusion cloud.

Thus, its reaction rate with that beacon UMI is relatively higher

(Figure 2B) and results in a correspondingly larger number of

UEIs (Figure 2C). If the target UMI is further away, the balance

of overlaps between diffusion clouds changes. Indeed, plotting

expected UEI matrix elements for the target UMI on two axes,

we see that its trajectory remains one-dimensional (Figure 2D).

Extending to a large population of target UMIs across many

positions, these new target UMIs, just like the target UMI in the

toy example, also interact with the same two beacon UMIs.

Therefore, we can also plot them on the same two axes, and

wherever they land, we could expect them to scatter around

the same one-dimensional manifold followed by the target UMI

of the original example. It is important to note that although the

variation of points across these axes may in fact all be equiva-

lent, inspection of their axial projections allows visualization of

their underlying dimensionality.

In any real dataset, UEI count is affected not only by position

but also by additional variables (such as amplification biases

and diffusion rates), each potentially adding to the data’s total

dimensionality. However, these sources of variation would be

suppressed along the principal dimensions of a UEI matrix so

long as their effect on neighboring UMIs is not systematically

correlated.

To identify the principal dimensions of the UEI matrix, we can

analyze the graph of UMI vertices andweighted UEI count edges

by constructing a Graph Laplacian matrix from the raw UEI ma-

trix (with its diagonal elements set so that each row sums to

zero). The Graph Laplacian eigenvectors with the smallest-

magnitude eigenvalues would visualize the most systematic

forms of variation in the DNA microscopy data (STAR Methods)

and illuminate the low-dimensional manifold, if any, it occupied.

However, even a low-dimensional manifold could be folded in

complex ways in the high-dimensional space formed by a full

UEI matrix, making it difficult to analyze the manifold’s shape

over large distances, especially in areas of the manifold that

are sparsely populated. Analyzing the UEI matrix manifold there-

fore first requires analyzing UMI subsets corresponding to local

regions of the original sample. We return to global relations in

subsequent sections.

To perform this local investigation, we developed a ‘‘zoom’’

function for DNA microscopy data by applying a recursive

graph-cut algorithm, identifying putative cuts by using the spec-

tral approximation to the cut of minimum-conductance (Shi and

Malik, 2000) (STAR Methods). This criterion separates sub-sets

of UMIs exhibiting small UEI-flux relative to the number of

UMIs they comprised. The algorithm first finds the sparsest cut

to the entire dataset, then the sparsest cuts to the resulting

halves, and so on until a further sparse cut cannot be made

(STAR Methods). We then visualize each of these sub-regions

by the eigenvectors corresponding to the smallest-magnitude

eigenvalues of their UEI-Graph Laplacian sub-matrix.

Successful Inference of Local Structure Identifies Cell-
like Structures with Specific Marker Expression
Strikingly, and consistent with our theoretical reasoning,

although the UMIs in these sub-sets fully spanned at least all



Figure 2. Encoding and Decoding Molecular Localization with DNA Microscopy

(A–D) Expected behavior of UEI counts. Diffusion profiles with length scale Ldiff belonging to different amplifying UMIs overlap to degrees that depend on the

distance between their points of origin (A). Greater overlaps between diffusion profiles result in larger reaction rates (B), which in turn result in higher UEI formation

frequencies (C). Because UEI counts are therefore proper functions of position, as a UMI relocates, it sweeps out a curve along the UEI count axes equal to the

dimensionality of space it occupies (D).

(E–H) Data segmentation permits individual sets of 104 strongly interacting UMIs to be visualized independently. The top three non-trivial eigenvectors for the

largest data segments of samples 1 (E and F) and 2 (G and H) are shown, along with a different, magnified view of the same plot. Transcripts are colored by

sequence identity: gray, ACTB (beacons); white, GAPDH; green, GFP; red, RFP.

(I and J) Quantitative assessment of manifold dimensionality. PCA spectra from local (black) or averaged-local (cyan) covariance matrices formed from the global

UEI matrix eigenvector-coordinates of UMIs in samples 1 (I) and 2 (J). Covariance matrices were constructed for each UMI forming UEIs with at least 100 other

UMIs, using the first 100 eigenvector coordinates belonging to these associating UMIs alone.

(K and L) Average coupling frequencies for each beaconwith different target amplicons in samples 1 (K) and 2 (L). A coupling frequency between amplicon types k

and l is defined as the average across all beaconUMIs i of the product pikpil, where pik =
P
j˛Sik

nij=
P
i0
ni0 j . Here, nij is the number of UEIs associating beaconUMI iwith

target UMI j, and Sik is the set of all target UMIs of amplicon type k associating with beacon UMI i.

See also Figure S3 and Tables S1, S3, and S4.
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three eigenvector dimensions, the manifolds swept out by the

UMIs appeared only two-dimensional when represented in

three-dimensional scatterplots (Figures 2E–2H).We further quan-

tified the UEI data manifold’s local dimensionality by performing

principal-component analysis (PCA) on the spread of UMIs form-

ing UEIs with each individual UMI (Figures 2I and 2J; STAR

Methods).When highly connectedUMIs (associatingwith at least

100 other UMIs) were analyzed individually over the first 100 ei-

genvectors of the UEI-Graph Laplacian matrix, their coordinate-

covariance matrix eigenvalues decayed quickly. However, when

their covariance matrices were averaged, the eigenvalues of the

resulting matrix decayed slowly. These observations confirmed

a low dimensionality of the UEI data manifold, consistent with

neighborhoods of UMIs with low spatial dimensionality having

been successfully encoded into the UEI data matrix.

The two-dimensional manifolds exhibited clusters of UMIs

with indications of cellular resolution, by recapitulating the ge-

netic composition of the cell lines used in the experiment: a

pervasive distribution of the constitutively expressed ACTB

and GAPDH sequences, but a mutual exclusion between GFP

and RFP (Figures 2E–2H). Even on average across the dataset,

UEIs formed 3 to 5 times more frequently via an intermediary

beacon UMI between two GFP or RFP target UMIs and GAPDH

target UMIs than between GFP and RFP (Figures 2K and 2L).

Thus, an observer unaware of the spatial dimensionality of the

specimen or that cells even existed could discover both by

analyzing the DNA microscopy sequencing data alone.

Together, these two observations confirmed both cellular and

local supra-cellular resolution in DNA microscopy.

Inference of Global Molecular Positions from DNA
Microscopy Data
Next, we expanded our inference beyond the local scope of a

few thousands of proximal transcript molecules, by developing

a framework for evaluating the likelihood of a global position-es-

timate solution.

We reasoned that each UEI’s occurrence is analogous to a

‘‘coin-toss’’ experiment performed on every UMI-pair, with

each pair’s ‘‘occurrence’’ probability proportional to the corre-

sponding reaction rate (Figure 3A; STARMethods). We modeled

the reaction rate between a beacon UMI and a target UMI as an

isotropic Gaussian function of the distance separating them.

Because, like in a coin-toss experiment, the probability of

observing a given dataset is contingent on the probabilities

of all possible outcomes together, our diffusion model of a

Gaussian ‘‘point-spread function’’ imposed constraints on the

probabilities of UMIs in aggregate, not on each UMI individually.

In this probability function, UEIs in DNA microscopy act in the

same manner as photons do in optical super-resolution localiza-

tionmicroscopy (Hell, 2009): both narrow apoint-spread function

governed by a physical length scale (wavelength in the case of

light, diffusion distance in the case of DNA) as they accrue by

dividing that length scale by the square-root of their total number

(Figures 3B and 3C; STAR Methods). In real datasets, UEIs in-

crease progressively with increasing read depth, whereas UMIs

saturatemore quickly (Figures 3Dand 3E). In thisway, readdepth

in DNA microscopy constitutes a dial to increase the number of

UEIs per UMI, enhancing an image’s resolution.
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Unlike its optical counterpart, however, DNA microscopy

resolves a molecule’s position by orienting it relative to other

molecules, and its uncertainty is therefore a function of these re-

lationships. A relationship between two UMIs may come in two

forms: those that are direct and involve UEIs linking them, and in-

direct relationships that occur via intermediaries. The latter

emerges in the structure of the data, but will not strongly influ-

ence UMI positions if these positions are optimized indepen-

dently. This may be seen in the logarithm of the UEI-count

probability function (Figure 3F). This log-probability is the sum

of two components (Figure 3F, top): (1) a sum of squared-differ-

ences between positions, weighted by individual UEI counts,

and (2) a function of total UEI counts and total expected reaction

rates (that are themselves functions of UMI positions) across the

entire dataset. In order to still calculate the log-probability as a

whole in a way that scales linearly with data size, we imple-

mented the fast Gauss Transform (Greengard and Strain, 1991)

(Figures S4A and S4B).

If each UMI’s position is updated independently to maximize

this log-probability function, it will experience two forces,

corresponding to the function’s two added components: the first

pulls together UMIs that have directly formed UEIs between

them, and the second repels all UMIs from all other UMIs.

The likelihood of the position-solution is maximized when these

two forces balance. During the maximization’s update-process,

the only way in which an indirect relationship between UMIs will

influence their position-solution is if intermediary UMIs that

directly form UEIs with them separately have already changed

position.

To ensure that large length scale optimization captures these

indirect UMI relationships encoded in the data, we developed a

new maximum likelihood framework, which we called spectral

maximum likelihood estimation or sMLE, to generate global rep-

resentations of the DNA microscopy data. First, we note that

because maximizing the first component of the log-probability

entails minimizing the magnitude of the sum of squared-differ-

ences, it can be individually solved by identifying the smallest-

magnitude eigenvalue/eigenvector pairs of the UEI Graph

Laplacian introduced earlier (Figure 3F, bottom; STARMethods).

Each eigenvector represents a distinct way in which UMIs can be

globally rearranged to suit orientation requirements expressed

by the sum of squared-differences between local points. The

eigenvector with the smallest-magnitude eigenvalue represents

the best arrangement, the second smallest-magnitude eigen-

value the second best, and so on. Critically, these eigenvectors

are not themselves solutions to the global maximum likelihood

problem for a DNA microscopy dataset: they are local and linear

solutions, and will individually exhibit all of the distortions

observed in Figures 2E–2H.

However, we reasoned that because sums of eigenvector

solutions to the local linear problem would produce solutions

that would also satisfy local constraints, sum-coefficients of

these eigenvectors could act as variables in a larger-scale

non-linear likelihood maximization. By seeding a solution with

the two eigenvectors corresponding to the smallest-magnitude

eigenvalues, optimizing their coefficients, then incorporating

successive eigenvectors and repeating, we could find global

solutions that were also well-constrained locally. These sMLE



Figure 3. Image Inference from DNA Microscopy Data

(A) Modeling diffusion of amplifying UMIs as isotropic across length scale Ldiff allows the likelihood of a UMI-position solution to be evaluated given observed UEI

counts.

(B and C) Uncertainty in DNA (B) versus optical super-resolution (C) microscopy. Given its reacting partners’ positions, DNA microscopy (left) defines a UMI’s

uncertainty as a physical length scale (DNA diffusion distance, Ldiff) divided by the square-root of the number of individual quanta measured (UEIs) in a manner

analogous to quanta (photons) in super-resolution microscopy (right).

(D and E) Rarefaction of UMI and UEI data. Shown are curves with an upper-bound, indicating total UMI/UEI counts, and a lower-bound, indicating those from the

final pruned UEI matrix, for samples 1 (D) and 2 (E).

(F) The sMLE algorithm uses eigenvector solutions to part of the position-probability function to identify a linear basis for the solution to the full likelihood function.

(G) sMLE enhances performance in free-diffusion simulation tests. From left: original image, results frompoint-MLE on simulated images with 100 or 10UEIs/UMI,

and from sMLE with 10 UEIs/UMI.

See also Figures S3 and S4.
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solutions showed strong advantages in simple simulations over

maximizing the likelihood while treating every UMI indepen-

dently, especially when UEI counts were limiting (Figure 3G).

This effect remained present even when the simulated the form

of the diffusion profiles deviated from our Gaussian model

(Figure S4C).

DNA Microscopy Correctly Recapitulates Optical
Microscopy Data
We next sought to apply the sMLE inference framework to deter-

mine whether DNA microscopy could resolve supra-cellular

coordinates compared to optical microscopy. To this end, we
constructed reaction chambers with glass slides (Figures S1B

and S1C) and plated GFP- and RFP-expressing cells in a highly

localized pattern within the chamber (Figure S1C). We then

imaged GFP- and RFP-expression in cells across the entire

area of the reaction chamber using an epifluorescence micro-

scope before the DNA microscopy reaction (Figures 4A and

4B), sequenced the resulting DNA library to saturation (Fig-

ure 4C), and applied the sMLE inference algorithm.

Strikingly, the resulting image recapitulates optical micro-

scopy data without systematic distortion (Figure 4D), and reca-

pitulates both the shape of the cell population boundary as

well as the distribution of GFP- and RFP-expressing cells within
Cell 178, 1–13, June 27, 2019 7



Figure 4. Accurate Reconstruction by DNA

Microscopy of Fluorescence Microscopy

Data

(A and B) Optical imaging of co-cultured cells.

(A) Full reaction chamber view of co-cultured GFP-

and RFP-expressing cells (scale bar, 500 um).

(B) Zoomed view of the same cell population (scale

bar, 100 um).

(C and D) DNA microscopy of co-cultured cells.

(C) Rarefaction of UMIs and UEIs with increasing

read-sampling depth.

(D) sMLE inference applied to DNAmicroscopy data,

reflected/rotated and rescaled for visual comparison

with photograph. Transcripts, sequenced to 98 bp,

are colored by sequence identity: gray, ACTB (bea-

cons); white, GAPDH; green, GFP; red, RFP. Grid-

line spacings: diffusion length scales (Ldiff), emerging

directly from the optimization (STAR Methods).

See also Figure S4 and Tables S1, S2, S3, and S4.
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it. Importantly, the inferred image preserves the correct aspect

ratio: the individual axes only needed to be rotated and reflected,

but did not need to be independently re-scaled. This demon-

strated that DNA microscopy is capable of generating accurate

physical images of cell populations.

Large-Length-Scale Optimization and the Folded
Manifold Problem
We applied DNA microscopy to optimization at larger length

scales. Applying sMLE inference to the original data from several

hundred cells used to generate the original eigenvector repre-

sentations (Figure 2) gave images that reproduced the individual

cell compositions of the earlier visualizations (Figure 5). These

large-scale optimizations were also robust to data down-sam-

pling (Figure S5).

However, the reconstructed images exhibited ‘‘folding’’ that

indicated how the process of projecting large and curved high-

dimensional manifolds onto two-dimensional planes was vulner-

able to distortions. The causes for this ‘‘manifold folding’’

problem are illustrated by how low-dimensional manifolds

come into being within a high-dimensional UEI data matrix (Fig-

ures 2A–2D). The eigenvector calculation (Figure 3F) involves

identifying hyperplanes that can be drawn through these low-

dimensional manifolds that maximally account for variation in

the UEI data. It does this in a manner similar to linear regression,

balancing the advantage of fitting certain parts of the data with

the costs of not fitting other parts of the data.
8 Cell 178, 1–13, June 27, 2019
This balancing can yield errors in several

ways. If a large number of UMIs in one part

of the dataset rotate the top calculated ei-

genvectors (with the smallest-magnitude

eigenvalues) away from UMIs in a different

part of the dataset, then projecting the

global dataset onto these eigenvectors

will cause these neglected UMIs to fold

on top of one another. This will produce

the type of ‘‘folding’’ artifact observed for

large-scale optimization (Figure 5). If we
avoid eigenvector calculation entirely and optimize each UMI’s

position independently (Figures S6A and S6B) we avoid such

defects, but obtain close-packed images, as predicted by simu-

lation (Figure 3G), that do not preserve empty space. This

highlights the distinct nature of DNA microscopy’s imaging

capabilities compared to light microscopy’s: while in light micro-

scopy density is the key challenge, in DNAmicroscopy it is spar-

sity that can be challenging.

Cell Segmentation Can Be Performed on the UEI Matrix
Based on Diffusion Distance
We next analyzed the degree to which the UEI matrix could be

used to segment cells and analyze single-cell gene expression.

Importantly, up to this point, no step in the process—experi-

mental or computational—had knowledge that cells even exist.

To perform segmentation, we applied the same recursive

graph cut algorithm as used earlier (Figures 2E–2H) to generate

local eigenvector visualizations of the data. By increasing the

conductance-threshold dictating whether segments of the

data should be left intact, we assigned transcripts to putative

cells (Figures 6A, 6B, S6C, and S6D), again without regard to

transcript identity (i.e., GFP versus RFP). To quantify segmen-

tation quality, we calculated the probability that, within each

putative cell, the minority fluorescent gene transcript would

occur at or lower than its current value, given its prevalence

in the dataset. We found the median p value decayed rapidly,

over a range of conductance thresholds, to <10�10, with



Figure 5. Inferred Large-Scale DNA Microscopy Images Preserve Cellular Resolution

(A–J) Inference using the sMLE global inference approach for sample 1 (A–E) and sample 2 (F–J), with each transcript type shown separately (A–D and F–I) or

together (E and J) (although inferences are performed on all transcripts simultaneously and are blinded to transcript identity). Grid-line spacings: diffusion length

scales (Ldiff), emerging directly from the optimization (STAR Methods).

See also Figures S4, S5, and S6 and Tables S1, S2, S3, S4, S5, and S6.
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increased numbers of reads and of resolved cells analyzed

(Figures 6C and 6D).

This analysis remained agnostic to inferred molecular posi-

tions and demonstrated that modularity within the raw UEI

data matrix was sufficient to perform rough segmentation of in-

dividual cells. In order to observe the degree to which inferred

molecular positions could help improve cell segmentation, we

quantified, for each UEI-connected UMI pair belonging to the

same spectrally segmented cell, the fraction of their respective

position uncertainties that overlapped (STAR Methods). We

assigned this UMI overlap-fraction the symbol g, which could

vary between 0 and 1. We then separated sub-sets of UMIs

into distinct cells if no pair of UMIs connecting these sets had
a value of g of at least a specified threshold. We analyzed GFP

and RFP sequestration across cells with either the initial posi-

tion-independent segmentation (g = 0), or with fraction-overlap

threshold g = 0.75 or 0.9 (Figures 6E and 6F) using sMLE-inferred

UMI coordinates. Increasing the threshold g enhanced the

sequestration between GFP and RFP transcripts among cells,

demonstrating the usefulness of applying inferred positions to

the task of de novo cell segmentation.

Imaging Large Numbers of Different Transcripts in DNA
Microscopy
To demonstrate that DNA microscopy and its associated cell

segmentation could be extended to larger numbers of genes,
Cell 178, 1–13, June 27, 2019 9



Figure 6. Segmentation of DNA Microscopy Data Recovers Cells De Novo

(A and B) Data segmentation recovers putative cells without a priori knowledge. Cell segmentation for samples 1 (A) and 2 (B) by recursive graph-cutting of the UEI

matrix is shown with a random color assigned to each inferred cell, qualifying if it contained at least 50 UMIs and had at least one transcript each of ACTB and

GAPDH. The minimum conductance threshold was set to 0.2. Surface height and color opacity scale with likelihood density, normalized to the maximum value

within each putative cell.

(C and D) Segmentation performance. The effects of cell segmentation for samples 1 (C) and 2 (D) with minimum conductance thresholds 0.14 (black), 0.2 (cyan),

and 0.26 (magenta) are shown on binomial p values quantifying segmentation fidelity (solid lines) and putative cell count (dotted lines).

(E and F) Inclusion of position information from sMLE inferences improves performance. Shown is the separation of fluorescent protein transgenes among

decreasing numbers of identifiable cells for samples 1 (E) and 2 (F), with GFP UMI fraction and RFP UMI fraction shown in green and red shades, respectively.

See also Figures S4 and S6 and Tables S1, S2, S3, and S4.
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we synthesized cDNA by reverse transcription from up to 20

additional genes that have been previously shown to be differen-

tially enriched (although not exclusively expressed) in MDA-MB-
10 Cell 178, 1–13, June 27, 2019
231 and BT-549 cell lines (Klijn et al., 2015) (Tables S5 and S6;

STAR Methods). We performed global image inference (Figures

S6E and S6F) and applied our recursive graph-cutting cell
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segmentation algorithm (Figures S6G and S6H). Rarefaction

analysis demonstrated rapid saturation of UMI and UEI counts

(Figures S6I and S6J). Pearson correlations between the GFP-

fraction per spectrally segmented cell (out of total transgene

transcripts per cell) and fraction of endogenous genes expected

to be enriched in the GFP cell line (out of total endogenous gene

transcripts enriched in either cell line) gave r = 0.29–0.41 (n = 764

and 265) for two experiments, respectively (p value <10�6, per-

mutation test). This demonstrated that the transgenes labeling

these cell types retained information about cell-type-specific

endogenous expression, and that this information could be

read out from DNA microscopy data. Moreover, because DNA

microscopy measures full amplicon sequences, it can readily

distinguish transcript variants for example from two different al-

leles, such that each localized transcript is assigned to a specific

allele, without the need for any a priori known allele-specific

primers (Figures S6K and S6L).

To more directly compare between the DNA microscopy data

and bulk RNA profiling data for these genes, we classified each

putative cell in our dataset as MDA-MB-231 if it had more GFP

UMIs than RFP UMIs, and as BT-549 otherwise, and then

compared these cell’s profiles to previously measured ones.

We found a good correlation between UMI counts and read

counts among endogenous genes for each putative cell type

individually (Spearman rs = 0.54–0.64, Figures S6M and S6N),

further matching DNA microscopy quantitation with bulk RNA

sequencing (RNA-seq) data. The data further provided the op-

portunity to analyze the contribution of gene insert size to

average UEI formation distance. In the context of the DNAmicro-

scopy experiment and over the range of gene insert sizes

measured (200–300 bp), we observed this effect to be minimal

(Figures S6O–S6R).

DISCUSSION

The fundamental advance of DNA microscopy is to physically

image biological specimens using an unstructured and stand-

alone chemical reaction without optical information, making it a

distinct microscopic imaging modality. We have drawn a close

technological analogy between DNAmicroscopy and optical su-

per-resolution microscopy: both take advantage of stochastic

physics to reduce measurement uncertainty beyond what may

seem superficially to be a physically imposed limit.

However, the two differ in several fundamental ways and as a

result are highly complementary. Optical super-resolutionmicro-

scopy relies on the quantum mechanics of fluorescent energy

decay. DNA microscopy, however, relies entirely on thermody-

namic entropy. The moment we tag biomolecules with UMIs in

the DNA microscopy protocol, the sample gains spatially strati-

fied and chemically distinguishable DNA point sources. This

tagging process thereby introduces a spatial chemical gradient

across the sample that did not previously exist. Once these point

sources begin to amplify by PCR and diffuse, this spatial gradient

begins to disappear. This entropic homogenization of the sample

is what enables different UMI diffusion clouds to interact and

UEIs to form. It is therefore this increase in the system’s entropy

that most directly drives the DNA microscopy reaction to record

meaningful information about a specimen, including both the
UMI coordinates and differences in spatial impedances that

each UMI diffusion cloud experiences as it evolves.

Detection of these spatial barriers, achieved by comparing

UEI formation rates at different length scales, is central to cell

segmentation in DNA microscopy and offers an important

distinct tool for analyzing biological morphology. The use of a

low-pass spectral filter to perform cellular segmentation from

UEI data matrices further clarifies the parallels between DNA

microscopy and light microscopy, in which low-pass filters

permit morphology to be inferred from high-variance pixel

intensities.

However, one key weakness of DNA microscopy remains the

resolution of empty space, and future work will be needed to

eliminate this obstacle to produce high-quality reconstructions

of samples over large lengths where there are gaps in molecular

density. There are two potential solutions to this problem: an

experimental one and an analytical one. First, a ‘‘landmark’’-

based experimental approach, in which specific DNA sequences

are deposited at known physical locations to assist in the image

reconstruction process, may ultimately prove the most cost-

effective way to achieve this. Second, better analytical tech-

niques to correct for large length scale distortions may prove

equally effective, without complicating the experiment itself.

DNA microscopy offers a distinct form of optics-free imaging

that leverages the large economies of scale in DNA sequencing.

The technology does not require sacrificing spatial resolution for

sequence accuracy, because it benefits, rather than suffers,

from high signal density and it does not hinge on optical resolu-

tion of diffraction-limited ‘‘spots’’ in situ. By using chemistry itself

as its means of image acquisition, DNA microscopy decouples

spatial resolution from specimen penetration depth (otherwise

linked by the properties of electromagnetic radiation) and

thereby sidesteps a tradeoff imposed by the physics of wave

propagation. Furthermore, by virtue of capturing an image of a

sample through a volumetric chemical reaction, DNA micro-

scopy may provide an ideal avenue for three-dimensional imag-

ing of intact whole mount specimens.

Because DNAmicroscopy does not rely on specialized equip-

ment and can be performed in amulti-well format with normal lab

pipettes, it is highly scalable, such that a large number of sam-

ples can be processed in parallel. It is fully multiplex-compatible

(imaging any PCR template) and uses sequencing-depth as a

dial to enhance genetic detail, through the accrual of UMIs

(including those belonging to low-abundance transcripts, in a

manner equivalent to any traditional sequencing assay) and

spatial detail through the accrual of UEIs.

Moreover, because DNA microscopy reads out single-nucle-

otide variation in the biological DNA or RNA sequences it tar-

gets, it spatially resolves the astronomically large potential

variation that exists in somatic mutations, stochastic RNA

splicing, RNA editing, and similar forms of genetic diversity in

cell populations. We demonstrated that DNA microscopy

achieves this at high sequencing accuracy (99.7%–99.9%/bp)

over long read lengths (�100 bp) (Figures S2 and S6), such

that transcripts from different alleles are uniquely positioned,

without the need to know a priori the extent of genetic diversity.

In this way, DNA microscopy is a compelling approach to study

the tissue organization of cells such as lymphocytes, neurons,
Cell 178, 1–13, June 27, 2019 11
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or mutated cancer cells, where somatic mutation, recombined

gene segments, and other sources of nucleotide-level variation

endow unique molecular identities with important physical

consequences.

Our development of a chemically encoded microscopy sys-

tem lays the foundation for new theoretical and experimental ap-

plications and extensions of the technology. Future experimental

and computational enhancements should better resolve large

length scales that include large spatial gaps between groups of

molecules. Furthermore, the UEI, by effectively functioning in

these experiments as a DNA analog of the photon, has illumi-

nated awider potential role for DNA as amedium for artificial pre-

cise biological recordings of chemical kinetics. Most directly, the

principle of DNA microscopy can be applied beyond the tran-

scriptome, for example directly to DNA sequences or to proteins

detected with DNA-labeled antibodies. Looking to the future, a

full exploration of individual and idiosyncratic biological spatial

structures by encoding them into DNA bases, instead of pixels,

as demonstrated here, may complement existing grid-capture

and wave-based imaging methods and reveal new and previ-

ously inaccessible layers of information.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Superscript III Thermo Fisher Cat#18080-085

Superase-In RNase inhibitor Thermo Fisher Cat#AM2696

dNTP 25 mM QIAGEN Cat#N2050L

Exonuclease I NEB Cat#M0293

2-arm thiol PEG Laysan Bio Cat#SH-PEG-SH-3400

4-arm acrylate PEG Laysan Bio Cat#4ARM-PEG-ACR-10k

Platinum Taq DNA polymerase Thermo Fisher Cat#10966-034

BSA NEB Cat#B9000S

Platinum HiFi Taq Thermo Fisher Cat#11304-029

Ampure XP Beckman Cat#A63881

PDMS R.S. Hughes Cat#RTV615

Glass beads Sigma Cat#Z265926

(3-aminopropyl)triethoxysilane/APTES Sigma Cat#440140

Critical Commercial Assays

NextSeq 500/550 v2 Kit Illumina TG-160-2002, TG-160-2004

Deposited Data

Raw sequence data This paper Database: SRA# PRJNA487001

Experimental Models: Cell Lines

BT-549-RFP Cell Biolabs Cat#AKR-255

MDA-MB-231-GFP Cell Biolabs Cat#AKR-201

Oligonucleotides

RT ultramers This paper See Tables S1 and S5

PCR oligonucleotides This paper See Tables S2 and S6

Software and Algorithms

DNA microscopy data pipeline This paper https://github.com/jaweinst/dnamic
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Joshua A.

Weinstein (jwein@broadinstitute.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed on female human cell lines BT-549-RFP (Cell Biolabs AKR-255) andMDA-MB-231-GFP (Cell Biolabs

AKR-201). All sub-culturing was performed at 37 C under 5% CO2 in growth medium containing 10% FBS (Seradigm 1500), 1%

NEAA (Thermo Fisher 11140), 1% pen-strep (Thermo Fisher 15140) in DMEM (Thermo Fisher 10569).

METHOD DETAILS

Bead-plate reaction chambers
Reaction chambers for large cell populations in samples 1-2 and 4-5 (Figure S1A) were designed in order to maximally adhere cells

while providing a thermally robust container for PCR thermo-cycling. 3 mm glass beads (Sigma Z265926) were acid washed in 1 M

HCl at 50-60C for 4-5 hours in a glass beaker with occasional agitation and then kept sealed in 90%ethanol at room temperature until

further use. After an initial rinse in acetone, beads were treated for 60 s in a 2% solution of (3-aminopropyl)triethoxysilane/APTES
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(Sigma 440140) in acetone. Beads were then rinsed 4 times in ddH2O, rinsed in isopropanol, and allowed to dry in a laminar flow hood

1 hour in a polystyrene Petri dish. Dried beads were kept sealed at room temperature until further use.

PDMS (R.S. Hughes RTV615) was mixed at a ratio of 1:10 w/w cross-linker:potting reagent, and mixed/degassed 3 minutes at

2000 rpm. Uncured PDMS was immediately dispensed into PCR plate wells (Axygen PCR-96-HS-C) at � 20 ul in volume. Plates

were then spun down at 500 3 g for 1 minute. Volumes were carefully equalized across wells, and the plate was spun down again.

APTES-treated glass beads were then placed into each PDMS-filled well of the PCR plate using plastic tweezers. The PCR plate was

then spun down again at 5003 g for 5minutes, and beadswere checked to ensure a small amount of surface was exposed above the

PDMS. Bead-plates (illustrated in Figure S1A) were then cured at 80 C for 2 hours, and stored sealed at room temperature until

further use.

Glass-slide reaction chambers
Reaction chambers for imaged cells in sample 3 are shown in Figures S1B and S1C. PDMS was mixed at a ratio of 1:10 w/w cross-

linker:potting reagent as before, and mixed/degassed 3 minutes at 2000 rpm. Uncured PDMS of mass 33-35 g was immediately

dispensed into 10 cm Petri dishes and degassed under vacuum for 1 hour. PDMS was then cured at 80 C for 150 minutes, and holes

were punched using Integra biopsy punches with diameter 6 mm in the pattern indicated (Figure S1B). Cut PDMS blocks were then

bonded with oxygen plasma to plain glass slides (VWR 16004-422) and cured at 80 C for 3 hours. 100-120 ul of mineral oil (Sigma

M5904) was then added to all wells and degassed 45 minutes. Slides were then baked at 80 C for 5 hours, then allowed to cool, and

mineral oil was aspirated. Slides were washed heavily with acetone and isopropanol to get rid of residual mineral oil and allowed to

dry. 2% APTES solution was prepared in acetone as above, and the bottom of the wells were immersed with 35 ul of this solution for

60 s. Wells were immediately rinsed 5 times with 120 ul water, 2 times with isopropanol, allowed to dry, and stored sealed at room

temperature until further use.

Cell seeding
Before cell seeding, bead-plates were rinsed twice with 70% EtOH and allowed to dry 45 minutes under UV in a cell culture hood. All

wells were then washed once with 100 ul DPBS (Sigma D8537). A fibronectin solution (Sigma F1141) was then prepared at a 1:100

dilution in DPBS and used to cover wells, which were left at room temperature for 1 hour. BT-549-RFP (Cell Biolabs AKR-255) and

MDA-MB-231-GFP (Cell Biolabs AKR-201) cell lines were then resuspended at 5000 cells/ml and 2500 cells/ml, respectively, in me-

dium containing 10% FBS (Seradigm 1500), 1% NEAA (Thermo Fisher 11140), 1% pen-strep (Thermo Fisher 15140) in DMEM

(Thermo Fisher 10569). After aspirating fibronectin, 50 ul of this cell suspension (totaling �250 and 125 cells of the two cell lines,

respectively, because the latter had a higher growth rate) was then added to the bottom of each beat-plate well.

For glass-slide reaction chambers, 85 ul of growthmedium (without cells) was added, and parafilmwas used to cover the top of the

reaction chamber assemblage. Holes were cut in themiddle of cell culture wells (the four interior wells in Figure S1B). 10 ul pipette tips

were then cut (Figure S1C) and cell suspension was added from the wide end so that it traveled to the narrow end, and was held in

place by capillary action. Parafilmwas then added to wide end to create suction that would hold the cell suspension in place after the

pipette tip was placed into growth medium. Pipette tips containing cell suspension and covered by parafilm were then placed verti-

cally into the slide reaction chambers, and cells were allowed to settle. Cells in all reaction chambers were then cultured 36-48 hours.

In situ preparation
After culturing, growthmediumwas removed and cells were washed oncewith 1x PBS (prepared from Thermo Fisher AM9625). Cells

were fixed in 4% formaldehyde (prepared from Thermo Fisher 28906) in 13 PBS for 15 minutes at room temperature. Formaldehyde

solution was aspirated and replaced by 33 PBS, and left for 10minutes. Samples were washed twice for 10minutes in 13 PBS, and

then permeabilized with a solution of 0.25% Triton X-100 (Sigma 93443) in 13 PBS for 10 minutes. Samples were then washed twice

in 13 PBS, treated with 0.1 N HCl (VWR BJ318965) for 2-3 minutes and then washed an additional three times in 13 PBS. Samples

were then kept at 4 C during preparation of the reverse transcription reaction.

Immediately before reverse transcription, samples were rinsed once in ddH2O. After aspiration, reverse transcription mixes were

added containing 400 uM dNTP (QIAGEN N2050L), Superase-In (Thermo Fisher AM2696) at 1 U/ul, Superscript III (Thermo Fisher

18080) at 10 U/ul, 1 3 Superscript III buffer, and 4 uM DTT. RT ultramers containing UMI’s (Table S1 for 4-plex, Table S5 for 24-

plex) were included at 850 nM (for Samples 1-2) or 100 nM (for all others) each. These reactions were then incubated 60 C for the

3 minutes, followed by 42 C for 1 hour, and then held at 4 C. After aspiration, samples were washed three times in 1 3 PBS, and

kept at 4 C in the final wash overnight. Samples were rinsed with ddH2O, and after aspiration, 40 ul of an enzymatic digestion mix

was added including 1 3 exonuclease-I buffer (NEB B0293S) and 1.4 U/ul exonuclease I (NEB M0293). Reactions were incubated

at 37 C for 40 minutes, and then washed three times in 1 3 PBS.

Amplification mixes were prepared that included 400 nM each of primers OE1a and OE4b, 300 nM each of primers psbs12s

(Lbs12s for 24-plex samples, Table S6) and s8B, 30 nM each of LF-primers (Table S2, or for 24-plex amplification, 10 nM each of

the sF-primers in Table S6), 1.6 mM MgCl2, 200 uM dNTP, 0.5 mg/ml BSA (NEB B9000S), 8% v/v glycerol (Thermo Fisher

15514011), Platinum Taq DNA polymerase (Thermo Fisher 10966018), 1 3 Platinum Taq PCR buffer, a 4-arm acrylate PEG (Laysan

Bio 4ARM-PEG-ACRL-10K) at 64 ug/ul, and a 2-arm thiol PEG (Laysan Bio SH-PEG-SH-3400) at 44 ug/ul. Solutions were prepared in

two parts, one containing the 2-arm thiol PEG, BSA, and glycerol, and one containing all other components. Following an additional
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sample rinse with ddH2O and aspiration, these two distinct components were mixed by pipetting and immediately added in 20 ul

volumes (as a combined mixture) to the sample to allow for a 10.8% w/v hydrogel to polymerize for 1 hour at room temperature.

This hydrogel would slow diffusion during the amplification reaction (Xu et al., 2016).

Samples were then thermo-cycled at 95 C 2min, 103 (95 C 30 s, 68 C 1min), 23 (95 C 30 s, 55 C 30 s, 68 C 1min), 163 (95 C 30 s,

60 C 30 s, 68 C 1 min), 68 C 1 min, 4 C. For 24-plex samples, samples were instead thermo-cycled 95 C 2 min, 13 (95 C 30 s, 55 C

30 s, 68 C 1min), 103 (95 C 30 s, 68 C 1min), 13 (95 C 30 s, 55 C 30 s, 68 C 1min), 163 (95 C 30 s, 60 C 30 s, 68 C 1min), 68 C 1min,

4 C. The initial sets of 10 cycles at high temperature in these programs were designed to prime only one end of the cDNA amplicon.

This would thereby confine initial amplification to increasing molecule copy numbers linearly with time, rather than exponentially. It

would thereby minimize the effect of potentially stochastic amplification start-times. Following in situ amplification, samples were

stored at �20 C until further use.

Library preparation

Frozen amplified samples were allowed to thaw on ice. A PEG-dissolution mix containing 460 mM potassium hydroxide (VWR

BJ319376), 100 mM EDTA (Sigma 03690), and 40 mM DTT (Thermo Fisher P2325) was added directly on top of the hydrogel at

4 ul per sample while the sample was still on ice, and left for 2 hours at that temperature. Samples were then heated to 72 C 5minutes,

and mixed by pipetting 10 times. 4 ul of a neutralization solution made by combining 400 ul 1N HCl (Sigma H9892) and 600 ul 1M

Tris-HCl pH 7.5 (TekNova T5075), adding this to the samples, and immediately mixing the solution again by pipetting. 11.1 ul of a

proteinase mix was then added that contained 0.35% v/v Tween 20 (Sigma P9416) and 0.35 mg/ml proteinase K (NEB P8107) in

10 mM Tris-HCl pH 8 (TekNova T1173). After mixing the samples by pipetting, incubation was performed at 50 C for 25 minutes.

55 ul of 10mMTris-HCl pH 8was then added to each sample, andmixed by pipetting. 85 ul of themixture was transferred to a new

PCR plate, and 0.653 volumes of Ampure XP beads (Beckman Coulter A63881) were added, mixed by pipetting, and left to incubate

at room temperature 10minutes. After twice washing with 70% ethanol, DNAwas eluted into 35 ul 10mMTris-HCl pH 8. Product was

then diluted 1:2 into a PCR reaction containing final concentrations of 300 nMSBS3LC primer, 300 nM rev-ill-214 primer, 3.3 uM each

of 10T-OE-P and 10T-OEc-P interference primers (following on the strategy employed in Turchaninova et al. (2013) to prevent new

concatemers from forming), 0.02 U/ul Platinum Taq HiFi DNA polymerase (Thermo Fisher 11304029), 1 3 Platinum HiFi Buffer,

1.5 mM MgSO4, and 200 uM dNTP. Reactions were thermo-cycled 95 C 2 min, 20 3 (95 C 30 s, 68 C 2 min), 4 C.

Reaction products were Ampure XP-purified just as before, with 0.653 volumes of Ampure XP beads added, and eluted into 40 ul

10 mM Tris-HCl pH 8. As part of a final sequence-barcoding step, 10 ul of sample eluent was added to a reaction containing 300 nM

for-ill-sbs3, 300 nM rev-ill-X (with a sample-specific barcode where indicated on the sequence), 0.02 U/ul Platinum Taq HiFi DNA

polymerase, 1 3 Platinum HiFi Buffer, 2 mM MgSO4, and 200 uM dNTP. Reactions were then thermo-cycled 95 C 2 min, 5 3

(95 C 30 s, 58 C 30 s, 68 C 2 min), and 1-5 3 (95 C 30 s, 68 C 2 min), 4 C in order to obtain sufficient DNA library for sequencing.

Sequencing
Following a final Ampure XP purification as above, with 0.73 volumes of Ampure XP beads added, NGS libraries were sequenced on

an Illumina NextSeq 550 instrument using manufacturer- standardized protocols for paired-end sequencing. Sequenced reads were

de-multiplexed using the Illumina bcl2fastq pipeline using the 8nt sequence-barcode included 50-adjacent to the SBS12 adaptor

50-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-30

(Figure S1; Table S2). Paired-end reads were sequenced from the SBS3 sequencing primer

50-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-30

to 103 bp, and from the SBS12 sequencing primer to either 57 bp or 151 bp, as indicated in Tables S1 and S5, depending on

whether full amplicon sequences were intended to be captured (instead of simply a minimum number of identifying bases).

UMI/UEI design
The number of N’s to use in a UMI/UEI will depend on the expected diversity of molecules and/or events being tagged. Assuming an

upper-bound for this diversity is known, the question reduces to the so-called ‘‘birthday-problem.’’ Given a UMI/UEI length [ (with

each of [ bases having all 4 base possibilities), the probability that two randomly-drawn UMIs/UEIs will match (assuming uniform

base-distributions) is P0ð[Þ = 4�[. Similarly, the probability that there will be another UMI/UEI within 1 bp is

P%1ð[ Þ= 1+ 3[

4[
(Equation 1)
because there is 1way for a randomly drawn sequence to be preci
sely the sequence of a previously drawn sequence, and 3[ways for

it to be the same except for exactly 1 mismatch. The probability that no two UMIs/UEIs out of N will overlap in this way is

Probð0 overlapÞ= ð1� P%1ð[ ÞÞð1� 2P%1ð[ ÞÞ/ð1� ðN� 1ÞP%1ð[ ÞÞ
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Define N ð[Þ through the relation
crit

1=2= ð1� P%1ð[ ÞÞð1� 2P%1ð[ ÞÞ/ð1� ðNcritð[ Þ � 1ÞP%1ð[ ÞÞ
Then N ð[Þ is the maximum diversity of templates beyond which
crit it becomes likely that at least 1 pair of UMI/UEI sequences will be

within 1 bp of one another. For UMI/UEI sequences in which there are [4 bases that are randomly selected across all 4 nucleotides

and [2 bases that are randomly selected across 2, we can re-write our original expression for P%1ð[Þ:

P%1ð[ 4; [ 2Þ= 1+ ð33 [ 4Þ+ ð13 [ 2Þ
4[ 4 3 2[ 2
Since theUMIs used in our experiments (Tables S1 and S5) have [4
 = 20 and [2 = 9, this gives usNcrit = 3.33 106 for each beacon- and

target-UMI dataset presented here.

Note that for UEIs, the picture is far simpler. Because a UEI brings together exactly two UMIs, two UEIs that are grouped together

will get one vote (assigned via plurality). Therefore, the less abundant indistinguishable UEI will simply be ignored. From here we can

see that we can bring UEI diversity far closer to the upper limit of that which is physically possible (4[, or in our case � 1012) without

substantial problems.

Note furthermore that even for UMIs, things get easier if the target sequences are used to separate out UMIs (this is not done for any

data-set presented here). For a set of target sequence frequencies fp1; p2; : : : ; pSg (normalized to sum to one) of S distinct

sequence-types labeled by UMIs, the probability that two randomly selected sequences will be the same is l =
P
i

p2
i . This measure,

also known as Simpson’s diversity index, affects the calculation above bymultiplying P%1. Themore diverse and distributed the pop-

ulation of sequences, the smaller the product lP%1 and the larger the value of Ncritð[Þ.

Remark on reagent quality control
Although reagent quality control is crucial for every protocol, PEG reagents used for the in situ PCR step are especially sensitive to

variation. Basic precautions that must be taken include desiccation with Drierite (Sigma 238961) or a similar agent in a sealed bag at

�20 C. Lot-to-lot variation must be controlled by keeping a careful log of the lots used for each experiment. We found that in general

this variation could be pre-checked by performing routine bulk PCR’s within the hydrogel, and comparing the results on a gel. UV/Vis

comparison may also be used as a way to compare inorganic salt content that may have carried over from manufacture.

QUANTIFICATION AND STATISTICAL ANALYSIS

Read parsing
Reads were parsed by first gating out those with a mean quality score of less than 30 on either the forward or reverse read. Forward

and reverse reads were then checked for inclusion of primer and stagger sequences, depending on the primers used and indicated in

Tables S1 and S5. Capitalized baseswere used to indicate those base positions intolerant of a singlemismatch, whereas consecutive

stretches of lower-case bases were used to indicate pieces of sequence that were permitted to contain mismatches up to the indi-

cated maximum of 0.06 as a fraction of total. For 4-plex data, 5 bases after gene-specific primer sequences were used to gate reads

in order to remove unrecognized gene inserts. Read counts and fractions retained for each dataset are shown in Table S3.

UMI/UEI clustering
In order to identify UEI and UMI sequences in a way that would make efficient use of the data available and in a manner specifically

accommodating to long-tailed distributions of PCR error, we developed a simple clustering algorithm, which we here on refer to as

EASL, or Extended Abundance Single-Linkage. EASL relies on single-mismatch alignments alone to identify clouds of erroneous se-

quences that decay in density the further in sequence-space they exist from an abundant, putatively correct, original sequence.

EASL clustering (Figure S2A) initiates by grouping every UMI/UEI (from each read location separately, so that it disregards the rest

of that read) within a dataset by perfect identity. The abundance (by read-count) is assigned to each UMI/UEI sequence. Each pair of

UMIs/UEIs is compared by un-gapped alignment. This may be performed by local similarity hashing in a way that permits full pairwise

comparison inO(NL2) time, whereN is the number of uniqueUMIs/UEIs, and L is the length of the UMI/UEI sequence. In brief, thismay

be achieved by generating L hash-tables/dictionaries of UMI/UEI sequences, where each of these dictionaries has a specific

sequence-position removed. For each dictionary, the full collection of L � 1 length UMI/UEI sequences generated by removing

that corresponding position are added to the dictionary. Those found grouped together will be those sets related by a single base

mismatch.

EASL clustering then proceeds as follows (Figure S2A). UMI/UEI i directionally links to UMI/UEI j if and only if the read-abundance of

UMI/UEI i is greater than or equal to the read- abundance of UMI/UEI j. Read number densities (RNDs) are calculated for each UMI/

UEI sequence by summing read-abundances belonging both to the sequence itself and to all sequences (of equal or lower abun-

dance) it links to. Each UMI/UEI dataset is then independently sorted by decreasing RND, and accordingly clustered independently,

as follows.
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The UMI/UEI with the largest RND initiates clustering as the first cluster-seed. All UMIs/UEIs to which this seed links by the afore-

mentioned criterion are accepted into its cluster. The algorithm then proceeds to the UMI/UEI with the next largest RND that has not

already been assigned a cluster. This UMI/UEI becomes a new cluster seed and all UMIs/UEIs not yet assigned to a prior cluster are

accepted to that belonging to the new seed. This process proceeds among all un-assigned UMIs/UEIs down the RND-sorted list.

When no un-assigned UMIs/UEIs remain, the algorithm terminates.

UEI-UMI pairing
After clustering, UMIs were accepted to further analysis if they associated with at least two reads (UMIs and UEIs remaining after this

preliminary filtering step are represented by the upper-curves in the rarefaction plots in Figures 3, 4, and 5). UEI clusters were then

matched with the beacon UMI/target UMI cluster-pair to which they were found to associate with the most reads in the original data.

This filtering was intended to remove incorrect associations between beacon UMIs and target UMIs caused by, among other things,

PCR chimera formation during downstream library preparation steps (we reasoned that the original UMI-UEI-UMI pairings would

have a head-start before late-stage amplification – once a new and incorrect UMI-UEI- UMI pairing would form, it would begin ampli-

fying from a quantity of 1 molecule later in downstream amplification).

The resulting ‘‘consensus’’ UMI-UEI-UMI pairings were then iteratively filtered by eliminating UMIs associating with fewer than

2 UEIs. After the initial set of UMIs were removed on account of having too few UEIs, the UEIs they associated with were removed,

the matrix was re-filtered to exclude UMIs that no longer had at least 2 UEIs, and so on, until no remaining UMIs could be found asso-

ciated with fewer than 2 UEIs. The resulting pruned dataset is shown in the lower-curves of the rarefaction plots in Figures 3, 4, and 5.

The target sequencesgroupedbyUMI-clustering further allowederrorsowing toPCRand sequencing tobesuppressed. Aggregating

the votes at every position for the reads grouped under a particular target UMI gave quality scores �10 log10 Prob incorrectð Þð Þ that
mostly stuck to Q = 30 until 60-70 bp after the end of the primer, after which Q hovered between 25-30 until it ended nearly 100 bp

into the transcript (Figure S2B).

Estimating a false positive rate
The EASL algorithm ensures that all UMI sequences within 1 bp will be grouped, unless there is a dip in read-abundances that would

indicate a disjoint cluster of sequences has been encountered. DNA microscopy sequence analysis also removes UMIs associating

with fewer than 2 UEIs. Taken together, we can estimate the rate at which ‘‘false positive’’ UMIs arise. The probability that a UMI is

included in the final image inference that does not truly exist can be written

FPRh
X
r

0
@ ProbðUMI mistakenly identified with r readsÞ

3 Prob

�
r reads belonging to UMI consist of

R2 UEIs of R2 reads each

�1A (Equation 2)
z
X
r

0
BB@
X
kR2

�
Probðerror UMI k nt away existsÞ

3Probðerror UMI k nt away has r readsÞ
�

3 Prob

�
r reads belonging to UMI consist of

R2 UEIs of R2 reads each

�
1
CCA (Equation 3)
where
Probðerror UMI k nt away existsÞz1� e�mk
with mk being the average number of UMI-variants per EASL-cluste
red UMI found at k nucleotides away from themost abundant UMI-

variant and

Probðerror UMI k nt away has r readsÞze�mR;kmr
R;k

.
r!
where mR,k is the average number of reads associated with a UMI
 variant at k nucleotides away from the most abundant UMI-variant.

The final probability in the summand (that r reads belonging to UMI will consist ofR 2 UEIs ofR 2 reads each) is an empirically deter-

mined quantity, which in Table S4 is measured through 10 random draws for each UMI in each dataset (sample-standard deviations

from these random draws are also shown). Plugging these quantities into to Equation 3 gives a false-positive rate ranging between

10�3 – 10�4 as a fraction of UMIs that we can expect to be duplicates of other UMIs. It is meanwhile worth noting that this quantity will

be an upper bound in the sense that it does not account for the likely outcome that even if an erroneous UMI with at least 2 UEIs does

make it to the final analysis, that it will not form a contiguous dataset with the main body of the data.
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Image inference
Formalization

Consider the evolving concentration distribution of products of a single UMI with index i, centered at position x!
0

i , during a DNA mi-

croscopy reaction. This can be modeled as isotropic diffusion using the Gaussian profile for concentration at position x!
0
at time t:

ci

�
x!

0

i ; x
!0

; t
�
ft�d=2e�k x!

0
� x!

0
i k

2�
4dDt + At (Equation 4)
where d is the dimensionality (of physical space), D is the diffusio
n constant, and A= log 2=Dt where Dt is the time-scale of a PCR

cycle. The rate of UEI/concatemer formation between UMIs i and j with the same diffusion constant will then be the volume-integral

wijðtÞf
Z
x!0 ci

�
x!

0

i ; x
!0

; t
�
cj

�
x!

0

j ; x
!0

; t
�
dV (Equation 5)
�� 0 0 �� 2� Z

ft�de��� x!i � x!j

�� 8dDt + 2At

x!
0 e�
���� x!0

�
�
x!

0

i + x!
0

j

	�
2

���� 2�2dDt dV (Equation 6)
�� 0
ft�d=2e��� x!i � x!
0

j

���� 2�8dDt + 2At (Equation 7)
Note that although the UEI formation rate is time-dependent – an
d that therefore the total observed reaction rate is in fact a sum of

functions above from each PCR cycle – provided amplification happens quickly, prior time-dependence to some final reaction time t

will be swamped out by the reaction rate at that time t . Therefore, for the sake of simplicity, we will drop the time dependence from

our probability model, and say that UMIs i and j located at t = 0 at positions x!ih x!
0

i=
ffiffiffiffiffiffiffiffiffiffiffiffi
8Ddt

p
and x!jh x!

0

j=
ffiffiffiffiffiffiffiffiffiffiffiffi
8Ddt

p
, respectively, will

have an expected cumulative reaction rate of

wijfe� jj x!i� x!j jj 2 + Ai + Aj (Equation 8)
where Ai and Aj, are amplification ‘‘biases,’’ ie the cumulative ef
fective amplitudes of the UMIs’ diffusion profiles. The length scale

above is denoted

Ldiffh
ffiffiffiffiffiffiffiffiffiffiffiffi
8Ddt

p

in the main text.
The probability of observing UEI counts fnijg for each UMI-pair hi; ji is then the multinomial expression

Prð�nij

� �� �wijð x!i; x
!

jÞ
�ÞfY

ij

�
wij

w,,

�nij

(Equation 9)
where dots ‘‘,’’ represent index summation (so that w,,h
P

wij).

ij

From this, we can write the log-likelihood

L=
X
ij

nij log

�
wij

w,,

�
+ const
and, relying on the functional form from Equation 8, we can write
 its gradient with respect to UMI position x!k as consisting of two

added sums:

1

2

v

v x!k

L = �
X
j

nkjð x!k � x!jÞ+ n,,

w,,

X
j

ð x!k � x!jÞwkj (Equation 10)
The first sum (‘‘sum #1’’) is linear and sparse, in the sense that mo
st values of nkj are zero. The second sum (‘‘sum #2’’), however, is

non-linear and dense, in the sense that no value of wkj is exactly zero. A solution to the above occurs when the gradient is zero for

every x!k , and where contributions from Equation 10 sums #1 and #2 balance. These two sums differ in several important ways.

The first difference is the role they play: sum #1 dictates how to center each UMI relative to one another, and attracts all UEI-asso-

ciated UMIs together, whereas sum #2 regulates how to separate them, by repelling all UMIs from all other UMIs at the strengths

dictated by the intrinsic length scale of the function wij. Second is the ease of calculation: sum #1 involves summing only the UEIs

observed in the experiment, the summation is sparse in the same way our observations are sparse; sum #2 meanwhile makes no

distinction between UEIs that are observed and UEIs that are not, and requires the summation over all UEIs that are possible. Finally,

the two sums differ in the length scales over which they operate. Optimization over small length scales containing minimal point

density variation will make sum #2 in Equation 10 approach zero, since it involves the summation of repulsive forces pointed in all
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directions. In these circumstances, sum #1 will dominate. However, over long distances in which large-scale point densities may

vary, sum #2 will contribute heavily.

Local linearization of the image inference problem
We can write sum #1 of Equation 10 as � nk, x

!
k +

P
j

nkj x
!

j = N x!, where x is now a solution to all UMI positions simultaneously, and

where we’ve defined the zero row-sum UEI matrix, or what in the main text is referred to as the UEI Graph Laplacian:

Nijh


�ni, ; i = j
nij ; otherwise

Note thatN is a sparse square matrix (all UMIs3 all UMIs), re-written from the rectangular form in Figure 1E, which has exclusively

beacon UMIs as rows and exclusively target UMIs as columns. Nwill always have a ‘‘trivial’’ eigenvector of all 1’s (with eigenvalue 0)

that solves the equation by making all positions equal. Solving Equation 10 part #1, by obtaining the non- trivial solution nearest to

0 means setting x! = argmink x!T
N x!k s:t: x!T

x! = 1, and amounts to maximizing the numerator of the multinomial probability in

Equation 9. We will write the solution to this eigenvalue problem in a row-normalized form

x! = argmink x!T
L�1N x!k s:t: x!T

x!= 1 (Equation 11)
where we use the diagonal matrix
Lijh



ni, ; i = j
0 ; otherwise
to equalize contributions to the gradient by each UMI.
Because the solution to the maximum likelihood problem is only linear locally, we need a way to zoom in on local portions of the

data in order to use it. We can do this by applying simple and approximate graph cut/spectral partitioning algorithms previously

described (Shi and Malik, 2000). Specifically, we take the symmetric normalized form of the UEI Graph Laplacian, L�1=2NL�1=2,

and find its second smallest-in-magnitude (after the trivial solution) eigen- value/eigenvector pair. We then perform a sweep of

possible cuts within that eigenvector to minimize the conductance between the resulting UMI sub-sets A and B: NðA; BÞ=
minðNðAÞ;NðBÞÞ, where NðA;BÞ is the number of UEIs associating UMI sub-sets A and B, and NðAÞ and NðBÞ are the total number

of UEIs belonging to those two UMI sub-sets, respectively.

Minimizing this conductance value allows for the ‘‘sparse cut’’ described in the main text. By iteratively cutting the matrix, re-form-

ing the matrix L�1=2NL�1=2, and continuing until the minimum available conductance-cut is above a threshold, we can obtain local

linear data subsets depicted in Figures 2E–2H.

Setting the threshold higher provides for more extensive cutting, and results in the cell segmentation shown in Figures 6A and 6B.

The accompanying binomial p values in Figures 6C and 6D present, for putative cells withR 50 UMIs and at least one ACTB and one

GAPDH transcript:

ph
Xk0
k = 0

�
m
k

�
qkð1� qÞm�k
where k
0
is the number of UMIs belonging to the minority transge
ne (GFP or RFP) within that putative cell, m is the total number of

transgene UMIs observed, and q is the frequency of the minority transcript within the entire dataset. It therefore describes the prob-

ability of observing the cell as-is under a random partitioning hypothesis.

Curating spectral segmentation using inferred UMI positions
We say that a UEI connecting UMIs i and j satisfies a spatial overlap threshold g (in Figures 6E and 6F) if given their respective po-

sitions x!i and x!j:

g%
k R d x! e�k x!� x!i k 2

ni,e�k x!� x!j k 2
n,j k

k R d x! e�2k x!� x!i k 2
ni, k 1

2k R d x! e�2k x!� x!j k 2
n,j k 1

2

=

 
2ðni,n,jÞ�1=2

n�1
i, + n�1

,j

!d=2

e�k x!i� x!j k 2
�
ðn�1

i,
+n�1

,j Þ
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where d = 2 (the dimensionality of physical space in this manuscript),
1

2
ðni,�1 + n,j

�1Þ is the sum of position likelihood variances

derived under the section Resolution and UEI count, ni, and n,j are the total UEIs belonging to UMIs i and j, respectively. Note

that it will always be true that 0%g%1 by the Cauchy- Schwarz Inequality. We may then apply this criterion to the problem of cell

segmentation by asserting that all sub-sets of UMIs that are part of the same putative cell must be connected, via UEIs, by some

chain of sufficiently overlapping UMI-UMI pairs.

Global likelihood maximization
Moving to larger length scales means dealing with sum #2 of Equation 10. In order to handle the large-scale summation of every pair

of UMIs (otherwise prohibitive due to its quadratic scaling), we adapted the Fast Gauss Transform (Greengard and Strain, 1991) that

allowed calculation of this sum with bounded error in linear time. Error bounds were parametrized as the maximum possible fraction

of the calculation of the weight-sumwk, for each UMI. This was set to 30%, which sufficed to constrain actual error levels to orders of

magnitude smaller (Figure S4).

Point-MLE solution
The most straightforward way solve Equation 10 is to randomly initialize the global solution with an ‘‘educated guess’’ of what the

global solution might look like and perform a gradient ascent of the global likelihood function using each UMI position as an indepen-

dent variable. Since the eigenvector solutions to Equation 11 satisfy local constraints, they provide a logical starting-point to initialize

this solution. To this end, we let the top 100 eigenvectors of the full data-set’s row-normalized UEI matrix L�1N be columns in the

matrix Z. The d-dimensional (with all samples here having d = 2) initial UMI positions x!init were then defined through the linear

combination

x!init =Z y!rand
where y! was a d-columnmatrix, with each row corresponding
rand to a different eigenvector, and its elements being linear coefficients

used to sum the columns of eigenvectors in Z. The elements of y!rand were normally distributed coefficients generated fromNðm = 0;

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n,,=100

p Þ. AmplitudesAi were set to log ni, (an approximation asserting that, on average, UMI density was uniform at the length

scale of diffusion) and gradient ascent proceeded using the calculation from Equation 10 (and applying the L-BFGS optimization

method from the SciPy library). This point-MLE approach was applied in Figures 5A–5H.

These global solutions illustrate, however, the difficulty in capturing information on empty space when each point is being opti-

mized independently. Clusters of points are unable to separate by more than the length scale Ldiff indicated by grid-lines (which is

defined as the unit-less value of 1.0 in the physical model of Equation 8).

Spectral MLE (sMLE) solution
In order to capture more information on empty space than the point-MLE solution allows, we can expand on the local linear solutions

previously described, and require our global solutions to remain linear combinations of the top eigenvectors of the full data-set’s row-

normalized UEI matrixL�1N. Again assembling these top eigenvectors as columns in the matrix Z, the global d-dimensional (with all

samples here having d = 2) solution x! of size M 3 d for all M UMIs was then defined as the linear combination

x!=Z y! (Equation 12)
where, as before, ywas a d-column matrix, with each row corresp
onding to a different eigenvector, and its elements being the linear

coefficients used to sum the columns of eigenvectors in Z. Using Equation 12 made y! a low-dimensional variable set that we could

optimize directly. The coefficients in y therefore dictated the UMI positions x! and the gradients of each UMI in x!were then calcu-

lated using Equation 10. These individual UMI gradients were then projected back onto the linear eigenspace defined by Z, allowing y

to be updated accordingly. Because eigenvectors in Z were not orthogonal, the back-projection of high-dimensional gradient D x to

low-dimensional gradient D y was defined (through Equation 12) by ðZTZÞ�1ZTD x!.

We approached this low-dimensional optimization within the eigenspace Z in as incremental a way as possible. We called this in-

cremental approach ‘‘spectral maximum likelihood estimation,’’ or sMLE. On iteration 1 of sMLE, the first 2 eigenvectors of matrix Z

were taken in isolation (corresponding to the non-trivial eigenvalues with smallest magnitude), and performing a gradient-ascent opti-

mization of Equation 10 with their coefficients alone gave optimal coefficients for generating a solution x! from a linear combination of

these two eigenvectors alone. On iteration 2, the eigenvector with the next smallest-magnitude eigenvalue/eigenvector pair in Zwas

added to those allowed to contribute to the solution x!, thereby adding to the number of optimizable coefficients in y!. This larger

vector y!was then optimized for the now 3 eigenvectors. This was repeated until all top eigenvectors (numbering 100 in the presented

datasets) were integrated into the linear combination defining solution x!.

The outputs are plotted in Figures 4, 5, and 6 and – for down-sampled read counts – in Figures S5A–S5F. It should be noted that the

two parameters that need to be fixed for this algorithm are the scaling factor that multiplies the initial 2 eigenvectors that seed the

solution and the choice of total eigenvectors after which the algorithm terminates (Figures S5G–S5J). Although alterations in the initial

scaling factor result in isomorphic images (due to their using a common set of eigenvectors to construct a solution), certain manifold
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folding-defects can be mitigated by scaling factor choice. A comparison is made between initializing y in Equation 12 to the identity

matrix I (applied to solutions in the main text and Figures S5A and S5D) versus initializing y!to I
ffiffiffiffiffiffiffi
n,,

p
, where n,, is the total UEI count

(applied to Figures 4, S5G, and S5I). The total number of eigenvectors at which the sMLE algorithm terminates (shown at 50 in Figures

S5H and S5J, compared to 100 everywhere else) similarly alters manifold folding by freezing out certain degrees of freedom the so-

lution can use to maximize the position likelihood function.

Resolution and UEI count
The relationship between the uncertainty of a UMI’s position given its neighbors’ can be understood as the equivalent of the stan-

dard-error in a statistical average (namely, the standard- deviation divided by the square-root of the number of independent mea-

surements). However, we sketch it out explicitly here in the context of the solution-likelihood function in Equation 9. If we assert

that in regions where the local linear conditions previously discussed apply (gradients in point density at the diffusion length scale

Ldiff are small), a solely varying UMI k has solution-likelihood at position X
!

k about some maximal likelihood at position x!k

Prob
�
X
!

k

	 � e�kX
!

k� x!k k
2
=2s2
then we can simply calculate
s=

 
� v2

vX
!2

k

log Prob
�
X
!

k

	!�1=2
Since under the local linear conditions, the multinomial probabilit
y in Equation 9 becomes a simple product of Gaussians, we get

log Prob
�
X
!

k

	
z
X
j

nkj log wkj + const
X !
= � j

nkjk x k � x!j k 2

L2
diff

+ const
where we’ve retained the physical length Ldiff in Equation 8. From
 this we can finally write

s =

 
2nk,

L2
diff

!�1=2

=
Ldiff

. ffiffiffi
2

p
ffiffiffiffiffiffiffi
nk,

p (Equation 13)
meaning a UMI’s positional uncertainty will shrink with the square
 root of the total number of UEIs with which it associates. This rela-

tionship is highlighted in Figures 3B and 3C.

Simulation
The efficacy of the sMLE algorithm was evaluated in a more controlled setting using simulated data exhibited in Figure 3G.

Simulations proceeded as follows. For each UMI i, molecular-copy numbers miðtÞ at amplification cycle t was initiated at

miðt = 0Þ = 1. For discrete linear amplification cycles t = 1;2;.; tlin, with tlin being the total linear-amplification cycle number,

the total molecular- copy numbers were updated as

miðt + 1Þ: = miðtÞ+Binom
�
miðt = 0Þ= 1;pdup

	

where 0<pdup %1 was the efficiency at which each template (UM
I-tagged cDNA) molecule was copied. As in the experimental pro-

tocol, linear amplification was followed by exponential PCR amplification, in which molecular-copy numbers were updated as

miðt + 1Þ: = miðtÞ+Binom
�
miðtÞ;pdup

	

for t = tlin + 1;tlin + 2;.; tlin + texp. Meanwhile, during exponen
tial PCR cycles t = tlin + 1; tlin + 2;.; tlin + texp the expected rate of

UEI formation wijðtÞ between every beacon i and target j was calculated according to the previously derived Equation 7

wijðtÞf
�
t�d=2e�k x!i� x!j k 2=8dDt

�
miðtÞmjðtÞ
where the expectation values of the total molecular abundance o
f beacon UMI i and target UMI j are here explicit – miðtÞ and mjðtÞ,
respectively. For a given total final UEI count N, we then calculated an expected UEI count for time t
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<nijðtÞ> =N
wijðtÞP
ijt

0wijðt0 Þ
The number of actual UEI formation events for every triplet ði; j; tÞ
 were then assigned randomly using Poisson statistics

nijðtÞ: = Poisð<nijðtÞ>Þ
The kth UEI forming event generated by UMI-UMI pair (i, j), would
 then come into existence at its time-of-creation t
0
with a molecular

count aijkðt = t
0 Þ = 1. That abundance would evolve in time until the end of the reaction t = tlin + texp according to the iteration relation

aijkðt + 1Þ: = aijkðtÞ + BinomðaijkðtÞ;pdup

	

Each UEI’s final read-abundance, given an expected total read d
epth U, was then assigned

wijkðtlin + texpÞ: = Pois

 
U

aijkðtlin + texpÞP
i
0
j
0
k
0 ai0 j0 k0 ðtlin + texpÞ

!

Image inference algorithms were then applied to this simulated d
ataset in Figure 3G. Here, freely diffusing products from 5000 bea-

cons and 5000 targets, incorporating amplification stochasticity and sparse UEI sampling (50000 UEIs). ‘‘Original’’ coordinates are

ground truth. UEIs in simulation are generated from an amplification reaction the same as in the experiment (see section In situ

preparation), with 10 linear amplification cycles and 16 exponential amplification cycles. Amplification stochasticity was introduced

bymaking eachmolecular duplication event 5% likely to not occur at all (pdup = 0:95). Each cycle taking place overDt = 1with aD= 1

diffusion constant: both of these are in arbitrary units, with ground-truth positions normalized to the length scale Ldiff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83133326

p
(the length scale from Equation 7), sinceD = 1, d = 3, and t = tlin + texp = 26 (note that diffusion is still simulated in 3 dimensions, even

if molecules are initiated on a 2-dimensional surface). Image inferences from simulations are re-scaled and registered (rotation/reflec-

tion) relative to ground-truth.

DATA AND SOFTWARE AVAILABILITY

Python code developed for this work is available for download at https://github.com/jaweinst/dnamic. Raw data are available for

download from the short-reads archive (https://www.ncbi.nlm.nih.gov/sra) under SRA project number Database: PRJNA487001.
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Supplemental Figures

Figure S1. Set-Up of the DNA Microscopy Reaction, Related to Figure 1

(A) Bead-plate reaction chambers for the DNA microscopy on samples 1-2 and 4-5. Uncured PDMS is centrifuged to the bottom of polypropylene PCR plates.

APTES-treated glass beads (coated with primary amines) are then added and spun into the uncured PDMS. The ensemble is then cured to generate a reaction

chamber suitable for cell culture, multichannel pipetting, thermo-cycling, iterative enzymatic reactions, and post-PCR containment. (B) PDMS cut used for glass-

slide reaction chambers used to process sample 3. The interior four wells are used for cell plating, whereas the wells along the slide perimeter are used as

reservoirs, containing 1xPBS. (C) Side view of glass slide reaction chamber when plasma-bonded to glass. (D) Assembly of the DNA microscopy amplicon in

multiple steps. The product achieved from the post-amplification step contains Illumina paired-end sequencing adapters.



Figure S2. Sequence-Error Handling at the Level of UMIs, UEIs, and Transcript Inserts, Related to Figure 1

(A) An illustration of the EASL clustering method for UMI and UEI sequence clustering in log- linear time. (B) Quality score �10 log10 Prob incorrectð Þð Þ depen-
dence on position for target amplicons belonging to GFP and RFP after the annealing primers in Table S1. Samples 1, 2, and 3 (blue, red, and yellow, respectively)

were sequenced out to�100 bp past the annealing primer site. and they are therefore shown here. Plot begins�5 bp into the transcript, since the first 5 bp were

used during initial read-filtering.



Figure S3. Distribution of UEIs across UMIs, Related to Figures 2 and 3

(A) Rank-order plot of UEIs for eachUMI (having aminimumof 2 due to filtering described under Quantification and statistical analysis: UEI-UMI pairing). (B) Rank-

order plot of associations for each UMI (ie the number of unique UMIs with which each UMI associates).



Figure S4. Simulations of the Fast Gauss Transform and Deviations from the Gaussian-Diffusion Model, Related to Figures 3, 4, 5, and 6

Fractional error histogram (A) and correlogram (B) using an adapted Fast Gauss Transform on simulated data. The Fast Gauss Transform allows sums of O(N2)

Gaussian interactions between point-sources (here, UMIs) to be calculated in O(N) time. The Fast Gauss Transform is applied above to the weight sums wi,hP
j

wij of 2000 simulated UMIs (1000 beacons and 1000 targets) uniformly distributed in a two-dimensional box of side length 10Ldiff and with amplitudes Ai, Aj

(from Equation 8) normally distributed with s = 1. Maximum fractional error bound is set to 30% for weights wi,. Physical simulations (C) with diffusion following

the long-tailed Laplace distribution� e�k x!k =Ldiff in place of the Gaussian distribution (� e�k x!k 2
=L2

diff ) used in Figure 3G. Grid lines indicate the respective lengths

Ldiff for both simulations, as in the simulation in Figure 3.



Figure S5. Data Down-sampling and Re-parameterization of sMLE Inference, Related to Figure 5

Down-sampling of samples 1 and 2 at various read-depths (A-C and D-F, respectively). A and D correspond to all-inclusive data-sets (20273379 retained reads

for sample 1, 16248577 retained reads for sample 2). B and E correspond to 12800000 sub-sampled reads and C and F correspond to 6400000 sub-sampled

reads. sMLE-initialization to I232
ffiffiffiffiffiffiffi
n,,

p
for samples 1 (G) and 2 (I), instead of initialization to just the identity matrix I232, the conditions used in panels A and F. sMLE

inference stopped at 50 (instead of 100) eigenvectors for samples 1 (H) and 2 (J).



Figure S6. Global Point-MLE Solutions, Segmentation, and Statistical Analyses for 4-Plex and 24-Plex Gene Targeting, Related to Figures 5

and 6

(A-B) Point-MLE solutions for samples 1 and 2, respectively. Grid-lines are used to denote spacings of Ldiff . (C-D) Position-agnostic cells segmentation for

samples 1 and 2, respectively: gray = ACTB/beacon, white =GAPDH, green =GFP, and red =RFP. (E-F) Point-MLE solutions for samples 4 and 5 (see gene sets in

Tables S5 and S6). All targeted genes were found at non-zero frequencies except for GRIN2D, MEA1, FAM170B, and C11ORF44. Additional gene colorings

include hypothetically MDA-MB-231 enriched genes (yellow) and hypothetically BT-549 enriched genes (magenta). (G-H) Position-agnostic cells segmentation

for samples 4 and 5, respectively. (I-J) Rarefaction plots for samples 4 and 5, respectively (with top and bottom curves indicating the same data subsets described

in Figure 2). (K-L) Zoomed-in portions of the image windows outlined in panels E-F, with de novo sequenced transcript variants of the CDC25B gene shown, and

their divergent sub-sequences highlighted. (M-N) Correlograms of log-transformed read-abundances from Klijn et al. (2015) compared to the mean fraction of

total UMIs observed in each putative cell (assigned as MDA-MB-231 if it had more GFP than RFP, or as BT-549 otherwise). (O-R) Mean RMS distance traversed

for each UEI associating the specified target gene versus the size of the corresponding gene insert for samples 1, 2, 4, and 5, respectively.
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