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Abstract

Melanocyte stem cells (McSCs) are the undifferentiated melanocytic cells of the mammalian

hair follicle (HF) responsible for recurrent generation of a large number of differentiated

melanocytes during each HF cycle. HF McSCs reside in both the CD34+ bulge/lower per-

manent portion (LPP) and the CD34- secondary hair germ (SHG) regions of the HF during

telogen. Using Dct-H2BGFP mice, we separate bulge/LPP and SHG McSCs using FACS

with GFP and anti-CD34 to show that these two subsets of McSCs are functionally distinct.

Genome-wide expression profiling results support the distinct nature of these populations,

with CD34- McSCs exhibiting higher expression of melanocyte differentiation genes and

with CD34+ McSCs demonstrating a profile more consistent with a neural crest stem cell. In

culture and in vivo, CD34- McSCs regenerate pigmentation more efficiently whereas CD34+

McSCs selectively exhibit the ability to myelinate neurons. CD34+ McSCs, and their coun-

terparts in human skin, may be useful for myelinating neurons in vivo, leading to new thera-

peutic opportunities for demyelinating diseases and traumatic nerve injury.

Author summary

The hair follicle (HF) undergoes three different stages, anagen, catagen, and telogen dur-

ing each hair cycle. In anagen, melanocyte stem cells (McSCs) give rise to differentiated

melanocytes which are responsible for coloration of hair. In catagen, melanocytes undergo

apoptosis while McSCs are retained. In the resting telogen HF, McSCs are identified as

non-proliferating and quiescent populations. Interestingly, in a mouse model, we identi-

fied McSCs in both CD34+ bulge and CD34- secondary hair germ (SHG) compartments
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of telogen HFs. In this study, we separated and characterized McSC subpopulations from

these two distinct compartments of telogen HFs. Using Dct-H2BGFP mice, bulge and

SHG McSCs were separated using CD34. Based on genomic approaches and functional

assays we found that CD34- McSCs (SHG) are primed for melanocyte differentiation and

CD34+ McSCs (bulge) exhibit broader neural crest stem cell properties and demonstrate

ability to differentiate into glia and myelinate neurons. Our results thus reveal functional

heterogeneity of McSC subtypes.

Introduction

Neural crest-derived melanocyte stem cells (McSCs) are responsible for producing differenti-

ated melanocytes during each hair follicle (HF) cycle. During embryogenesis, neural crest

cells emerging from neural tube generate melanoblasts which migrate to specific destinations

including eye, epidermis and developing HF where they continue to proliferate and produce

pigment-producing melanocytes in early postnatal life. In growing HFs, McSCs are distin-

guished from hair matrix melanocytes by their location in the outer root sheath (ORS) of the

bulge/ lower permanent portion (LPP) and by distinct molecular signatures, including the

expression of Dct and Pax3, but low Sox10 [1]. In resting HFs, McSCs are identified based on

their quiescence properties, expression of Dct, and by their localization within HF bulge/LPP

and a region previously described as the subbulge region [2].

The HF is a skin appendage composed of epithelial cells, follicular cells, mesenchymal cells

and pigment-producing melanocytes. During each cyclic expansion and regression, the mam-

malian HF proceeds through three distinct phases, anagen (growth phase), catagen, (regression

phase), and telogen, (a follicular resting phase) [3, 4]. The cycle is initiated for follicular expan-

sion when HF stem cells (HFSCs) in the hair germ of telogen HFs are activated by factors

including noggin (NOG), FGF-7, FGF-10 and TGF-β2 secreted from dermal papillae [5, 6]. In

the newly-initiated cycle, McSCs become activated by a Wnt signal from HFSCs in the sur-

rounding vicinity to generate proliferating, committed melanocyte progenitors [7]. During

fully-developed anagen, terminally-differentiated melanocytes reside in the inner core of the

hair matrix, where they produce and transfer melanin to the surrounding follicular epithelial

cells. During catagen, melanocytes degenerate along with the rest of the matrix and lower ORS

[8] and the HF returns to the resting phase. The quiescent state of telogen HFSCs is main-

tained by factors including BMP6 and FGF-18 from inner bulge cells [9], BMP4 from dermal

fibroblasts and BMP2 from subcutaneous adipocytes [10]. In telogen, the lower HF component

consists of two regions, the bulge/LPP [11] and secondary hair germ (SHG) [12], an epithelial

extension at the base of the telogen HF. These compartments can be distinguished using

region-specific markers, with the bulge compartment expressing the CD34 membrane glyco-

protein [13] and the SHG selectively expressing the intracellular adhesion protein P-cadherin/

Cdh3 [14]. McSCs along with other HFSCs are present in both compartments.

Recently, by using tetracycline-regulated expression of a stable H2BGFP fusion protein

from the Dct promoter in bitransgenic Dct-tTA;TRE-H2BGFP (Dct-H2BGFP) mice, we local-

ized subbulge McSCs to the SHG, a transient structure at the base of the telogen HF [15].

Given this localization of McSCs to anatomically separate telogen HF compartments whose

epithelial stem cells possess distinct characteristics, we wondered whether McSCs occupying

these distinct sections were functionally different or interchangeable. We describe for the first

time that McSCs can be separated into two distinct populations, corresponding to cells present

in the bulge and SHG HF compartments, using CD34. We show that CD34+ McSCs from the
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HF bulge unexpectedly possess the ability to function as glia, forming dense myelin sheaths

surrounding neurons of the myelin-deficient Shiverer mouse strain. They function less effi-

ciently as McSCs compared to CD34- McSCs. This finding raises the question of whether all

cells previously identified as McSCs uniformly possess melanocytic potential, or whether the

CD34+ subset of these cells represents instead another type of neural crest-derived progenitor

cell. Our findings reveal a novel developmental fate for one subset of McSCs, and suggest

approaches to utilize specific, skin-derived stem cell (SDSC) populations for nerve regenera-

tion and support.

Results

Identification of GFP-expressing McSCs in bulge and SHG of telogen HF of

Dct-H2BGFP bitransgenic mice

To identify McSCs in telogen HFs, we used Dct-H2BGFP bitransgenic mice [15]. The constitu-

tive expression of Dct-H2BGFP mice is comparable to the expression pattern of Dct-LacZ [2,

16, 17] and iDct-GFP mice [18], which express the transgene in melanoblasts, melanocyte pro-

genitors in bulge/LPP and terminally differentiated melanocytes [15]. Dct-H2BGFP cells were

present in both the CD34-expressing bulge region [9] of the HF and the CD34-negative, P-cad-

herin-expressing SHG region [6] at the base of the telogen HF (Fig 1A and 1B, S1A–S1D Fig).

Dct-H2BGFP cells in second telogen express the McSC markers Kit and Dct [15]. Careful

observation of Dct-H2BGFP cells in the bulge HF region revealed not only that these cells were

present in the CD34+ region, but also express CD34 (Fig 1C). To confirm that CD34 expres-

sion was not limited to the epithelial cells of the bulge, we showed that Kit, which is restricted

to HF melanocytes, and CD34 are co-localized (Fig 1D). Given the distinction between Dct-
H2BGFP cells either expressing CD34 in the bulge or lacking CD34 in the SHG, we deter-

mined formally whether each of these cell classes was neural crest-derived and from the mela-

nocytic lineage. Dct-H2BGFP cells co-localize both with a Tyr-CreER;R26-tdTomato signal

(Fig 1E) and with a Wnt1-Cre;R26-tdTomato signal (Fig 1F), demonstrating that CD34+ and

CD34- Dct-H2BGFP cells originate from neural crest and are members of the melanocyte line-

age. Since our identification of CD34+ and CD34- cells as putative distinct populations of

McSCs was limited to the telogen phase, we also attempted to identify CD34+ McSCs selec-

tively throughout the HF cycle. These cells could be identified at the follicular morphogenesis

stage (P8), at the first telogen (P21), and during anagen stages at both P30 and P70 (S2A–S2F

Fig). CD34- McSCs were also present at the P21 telogen stage. The SHG does not remain as a

recognizable anatomic HF feature during anagen, making it difficult to establish whether indi-

vidual cells beneath the bulge during these stages retain this identity during anagen. Nonethe-

less, analysis of expression of the differentiated melanocyte markers Tyr and Tyrp1 in HF

anagen at P30 shows a clear difference of expression in differentiated bulb melanocytes com-

pared to bulge McSCs where they are not detectable at this stage (S3A and S3B Fig). The persis-

tence of CD34+ Dct-H2BGFP cells throughout the HF cycle fulfills an important criterion for

these cells as McSCs.

Selective expression of CD34 by bulge Dct-H2BGFP cells suggested a strategy to separate

these cells from SHG Dct-H2BGFP cells to evaluate their molecular and functional properties.

Single cell suspensions prepared from shaven, dorsal skin of approximately 8-week-old (P56)

mice, an age when all HFs are synchronously in the telogen [4], were incubated with anti-

CD34 antibody and prepared (Fig 2A) for fluorescence-activated cell sorting (FACS). Dct-
H2BGFP cells could be separated into distinct CD34+ and CD34- populations using FACS.

Although the percentage yield of cells comprising these populations differed slightly between

experiments, in general 0.1–0.3% of the dermal cell suspension was comprised of CD34+ and
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Fig 1. Identification of GFP-expressing melanocyte precursor cells in bulge and SHG of telogen HF. Distinct subpopulations of

GFP-expressing cells in the CD34+ bulge region (arrows, A) and P-Cad+ SHG region (arrows, B) in P56 dorsal skin HFs. Scale bars:

(A) 100 μm (B) 50 μm. (C) GFP-expressing cells and anti-CD34 immunofluorescence in P56 dorsal skin HF. Dotted arrow depicts

co-localization of bulge GFP-expressing cell and CD34 expression and solid arrow shows SHG GFP-expressing cells lack CD34

expression. Scale bars: 50 μm. (D) Immunofluorescence of Kit and CD34 expression in bulge GFP-expressing cells in P56 dorsal skin

HF. Arrow depicts co-localization of bulge GFP-expressing cell with Kit and CD34 expression. Scale bars: 25 μm. (E & F) Co-

localization of Tyr (E) or Wnt1 (F) driven tdTomato expression and GFP-expressing cells from both bulge and SHG (arrows) in

telogen HF of Tyr-CreER;R26-tdTomato;Dct-H2BGFP or Wnt1-Cre;R26-tdTomato;Dct-H2BGFP mice at P56 respectively. Scale

bars: 50 μm.

https://doi.org/10.1371/journal.pgen.1008034.g001
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0.5–1.0% CD34- Dct-H2BGFP cells (Fig 2B, S1E and S1F Fig). To further evaluate the specific-

ity of these cell populations, RNA was isolated (S1G Fig), and relative gene expression for

specific marker genes determined (Fig 2C). These results confirmed that Dct-H2BGFP cells

expressed endogenous Dct at significantly higher levels than the basal keratinocyte gene Krt14,

Fig 2. Separation of bulge and SHG GFP-expressing melanocyte precursor cells of telogen HFs. (A) Experimental scheme:

McSCs identified in HF bulge and SHG of Dct-H2BGFP mice were separated using FACS with GFP and anti-CD34. (B) Separation

of bulge (CD34+GFP+) and SHG (CD34-GFP+) melanocyte precursor cells and CD34+GFP- and CD34-GFP- dermal cells using

FACS with GFP and anti-CD34, showing a representative image of the FACS. DP = Double positive, SP = Single positive and

DN = Double negative. (C) Quantitative RT-PCR analysis for the expression of Dct, Krt14, Cdh3, and Cd34 genes among the CD34

+GFP+(bulge), CD34-GFP+(SHG), CD34+GFP- and CD34-GFP- sorted cell populations. Here, Gapdh was used as reference gene,

(�P� 0.01 by ANOVA). (D) Quantitative RT-PCR analysis for the expression of Tyr, Tyrp1 and Pmel17 in bulge (CD34+GFP+) and

SHG (CD34+GFP+) sorted cells. Here, Gapdh was used as reference gene. (�P� 0.01 by ANOVA).

https://doi.org/10.1371/journal.pgen.1008034.g002
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with Dct expression marginally higher in CD34- Dct-H2BGFP cells compared to CD34+ coun-

terparts. Furthermore, Cd34 expression was significantly higher in the CD34+ Dct-H2BGFP

cells, with expression of Cdh3, encoding P-cadherin, reciprocally elevated in the CD34- Dct-
H2BGFP cells corresponding to the P-cadherin-expression in the SHG population. To further

evaluate the specificity of CD34+ and CD34- Dct-H2BGFP isolated cells, we examined FACS-

separated cells individually for Kit and CD34 expression with immunofluorescence. CD34+

and CD34- Dct-H2BGFP McSCs expressed Kit, a melanocyte marker (S4A Fig), whereas

CD34+ was only detected in CD34+GFP+ bulge McSCs and CD34+GFP- cells (S4B Fig). The

epithelial HF stem cell marker Krt14 was only expressed in GFP- cells (S4C Fig).

Bulge and SHG Dct-H2BGFP cells are McSCs with distinct functional

properties

The ability to separate subsets of HF Dct-H2BGFP cells during telogen, together with their ori-

gin in the melanocytic lineage, prompted us to evaluate the relative expression of the melano-

genic genes Tyr, Tyrp1, Pmel17, and Mitf within CD34+ and CD34- subsets. Quantitative

RT-PCR results (Fig 2D) showed that relative expression of all four melanogenic genes studied

was significantly higher in the CD34- McSCs present in the SHG compared to the CD34+ cells

from the HF bulge, suggesting that the SHG McSCs are at a more advanced state of melanocy-

tic differentiation than the cells in the bulge. To explore this finding functionally, cells were

sorted, cultured in melanocyte differentiation medium, and observed after 4 and 7 days in cul-

ture. Only cultured cells in the CD34- Dct-H2BGFP cell culture exhibited visible pigmentation

following these in vitro culture periods (Fig 3A). Quantification of cell pigmentation and mor-

phology (Fig 3B) confirmed that significant numbers of pigmented cells only developed in the

cultures of CD34- Dct-H2BGFP cells, with CD34+ Dct-H2BGFP cells principally maintaining

a round, rather than dendritic, non-pigmented appearance even after 7 days of in vitro culture

in melanocyte differentiation conditions. The percentage of pigmented cells from CD34+ cells

increased from 0 to 5% from day 4 to day 7, while this percentage increased from 2% to 25%

for CD34- cells introduced into the culture environment. Dendritic, non-pigmented cells

also increased (CD34+, 13% to 27%; CD34-, 38% to 65%). Representative examples are shown

in S5A Fig. CD34- McSCs also appeared to proliferate more in melanocyte differentiation

medium than CD34+ McSCs (Fig 3B and S5B Fig). These findings provided evidence that

CD34+ bulge Dct-H2BGFP cells are functionally distinct from the CD34- Dct-H2BGFP cell

population.

We determined whether both CD34+ and CD34- Dct-H2BGFP cells, previously character-

ized as quiescent [15], were McSCs. We introduced subsets of cells into amelanocytic skin and

observed transplanted skin for durable pigmentation. Equal numbers of CD34+ and CD34-

McSCs isolated from Dct-H2BGFP telogen HFs were transplanted into Mitf Mi-wh/Mi-wh neona-

tal mouse skin which was then engrafted onto nude mice (Fig 3C). CD34- McSCs repigmented

the amelanocytic murine HFs with high efficiency compared to CD34+ McSCs. 3/4 grafts of

CD34+ cells and 4/4 grafts of CD34- cells demonstrated pigmentation at two months following

graft placement. Pigmentation within the grafts was sustained, with durable pigmentation

observed over 6 months. Pigmented foci were observed beginning at 2 weeks following

engraftment, and in general did not expand or reduce in size over time. However, the pig-

mented foci were significantly larger following CD34- cell transfer compared to CD34+ cell

transfer (Fig 3D and 3E). Following engraftment and successful in vivo reconstitution of either

CD34+ or CD34- McSCs, cells are observed in both the CD34+ bulge and CD34- SHG, indi-

cating at least a relative ability of each cell subset to populate both niches in this experimental

context (S5C Fig). These results show that both CD34+ and CD34- Dct-H2BGFP are McSCs,
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Fig 3. Distinct melanogenic properties of bulge and SHG melanocyte precursor cells of telogen HFs. (A) In vitro melanocyte

differentiation potential of CD34+GFP+ and CD34-GFP+ McSCs in melanocyte differentiation culture condition for day 4 (top two

panels) or day 7 (bottom two panels). Dark arrow indicates pigmented cells and white arrow indicates dendritic but non-pigmented

cells. Scale bars: 100 μm. (B) Quantification of bulge and SHG McSCs potential to produce pigmented melanocytes in melanocyte

differentiation medium at day 4 and 7. �P� 0.01. (C) Viable CD34+GFP+ and CD34-GFP+ McSCs isolated from Dct-H2BGFP mice

were injected into skin fragments of neonatal MitfMi-wh/Mi-wh mice (P0 –P2). Injected skin fragments were engrafted onto nude mice

to observe regeneration of HF pigmentation. (D) Skin grafts following reconstitution with CD34-GFP+ cells (SP) showed

significantly greater regeneration of follicular pigmentation than grafts receiving CD34+GFP+ cells (DP). HF pigmented regions of

the grafted skin are indicated by arrows. No cell (NC) injected grafted skin fragments were used as a negative control and showed no

pigmented HFs. (E) Quantification of pigmented region of engrafted skin receiving CD34- McSCs, or CD34+ McSCs, or no cells.

Area of pigmented region was calculated using Image J software. (� P Value< 0.05. by ANOVA; N = 5).

https://doi.org/10.1371/journal.pgen.1008034.g003
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but nonetheless they possess distinct differentiation profiles and markedly different efficiencies

of McSC function.

CD34+ bulge McSCs have characteristics of neural crest stem cells

The previous experiments demonstrated that both CD34+ and CD34- Dct-H2BGFP cells are

McSCs, while exhibiting differences in their expression of melanogenic genes and their effi-

ciency of HF pigmentary unit reconstitution. To characterize differences between CD34+

bulge McSCs and CD34- SHG McSCs more completely, we performed RNA-seq and analyzed

the gene expression profiles of telogen-stage CD34+ and CD34- McSCs. Using an absolute

log2-fold� 1 cutoff, differential gene expression analysis of the RNA-seq reads obtained from

these cells demonstrated an expected upregulation of Cd34, a bulge marker, in CD34+GFP+

cells and Cdh3, a SHG marker, in CD34-GFP+ cells. Global hierarchical clustering and volcano

plot analysis showed differential expression of 3373 genes between bulge and SHG McSCs

(S6A Fig, S2 and S4 Tables). Ingenuity pathway analysis (IPA) showed that ‘Axonal Guidance

Signaling’ and two embryonic stem cell pluripotency categories were overrepresented in genes

more highly expressed in CD34+ McSCs, whereas representation in the ’Melanocyte Develop-

ment and Pigmentation Signaling’ cetagory was more equally weighted (S7 Fig and S3 Table),

suggesting a differentiation state difference between the cell subsets. Since melanocytes are

derived from the neural crest, we selected candidate neural crest stem cell-related genes from

the literature to investigate their gene expression differences further by inspection and in com-

parison with known melanocyte development and differentiation genes. We found that CD34-

McSCs expressed higher levels of melanogenic genes such as Mitf, Tyr, Tyrp1, Pmel, Pax3,

Mc1r, Erbb3, Sox10, Melan-A, and Slc45a2, consistent with the higher expression of Tyr,
Tyrp1, Pmel17, and Mitf determined by qRT-PCR (Fig 4B). In contrast, CD34+ McSCs

expressed higher levels of neural crest stem cell markers Nr2f2, Nr2f1 [19], Ngfr (p75) [20],

Twist1, Twist2, Snai1 [21], Sox9 [22], EdnrA [23], Gli1 [24], Bmp2, Bmp4, and Bmp7 [25, 26].

These subsets of cell type-characteristic genes organize into distinct hierarchical clusters (Fig

4A). Quantitative RT-PCR analysis of expression of select genes in CD34+ and CD34- McSCs

validated the RNA-Seq results (S6B and S6C Fig).

In a prior study, skin-derived cells expressing neural crest cell markers p75 and Sox10 grew

as spheroids in culture under non-adherent conditions. These cells were reported to exhibit

both melanocyte and glial differentiation potential [27]. Based upon this observation, we tested

the ability of CD34+ and CD34- cells to grow as spheroids under non-adherent conditions in

neural crest stem cell (NCSC) medium. Both populations of cells were capable of growth as

spheroids, although spheroids from CD34+ McSCs were larger than those from CD34- McSCs

(Fig 4C and 4D). The percentage of initially plated CD34+ and CD34- cells that formed spher-

oids was 0.43% and 0.33% respectively (Fig 4C). Cells growing as spheroids were placed in

adherent, neural crest cell culture conditions and studied for expression of proteins character-

istically expressed by distinct, neural crest-derived cell types, such as Gfap as a marker of glial

cells, Tuj1 antigen (β3-tubulin) as a marker of neurons, and α–smooth muscle actin (α-Sma)

as a marker of myofibroblasts [20], as well as the primitive keratin Krt15. Only adherent cells

derived from CD34+ McSCs expressed this spectrum of neural crest-derived cell markers (Fig

4E). Adherent cells derived from CD34+ and CD34- McSC spheroids both showed expression

of the melanocyte marker Tyrp1, although only cells derived from CD34- McSCs also revealed

visible pigmentation (Fig 4F). Quantification of the expression of markers in individual cells

(Fig 4G) showed that of all the neural crest-derived cell type markers expressed in cells derived

from CD34+ McSCs, Gfap was the most frequently expressed. CD34+ McSCs also selectively

expressed nestin, a neuronal stem cell marker, at higher levels (S10A and S10B Fig). Tyrp1 was
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Fig 4. CD34+ bulge McSCs exhibit distinct neural crest lineage potential. (A) Heatmap of scaled and clustered, variance

stabilizing transformation (VST) read count values obtained for select genes from RNA-seq analysis of CD34+ and CD34- McSCs. In

bulge and SHG McSCs, the melanogenic marker (red) and NCSC marker (blue) are differentially expressed, closely clustered and are

statistically significant. (Padjusted < 0.02, Benjamini-Hochberg adjusted p value) (B) RNA-Seq analysis, based on fold change, showed

that CD34+GFP+ McSCs (blue; left panel) express higher NCSC markers, whereas CD34-GFP+ McSCs (red; right panel) express

higher melanogenic markers. (C) Formation of non-adherent spheroids was studied among CD34+GFP+ (bulge) and CD34-GFP+

(SHG) McSCs when cultured in NCSC medium (top panels). The image in bottom panel depicts retention of GFP expression in

spheroids formed by both cell types. The top panel also shows the percentage of cells initially plated that formed spheroids from

three independent experiments. (N = 3, standard deviation reported) (D) The size of non-adherent spheroids derived from bulge

and SHG McSCs when cultured in NCSC medium as determined at days 2, 4, 6 and 8. (�P� 0.01, ��P Value� 0.05 by ANOVA;

N = 5). (E) Expression of neural crest lineage markers Gfap, α-Sma, Tuj1, Krt15 among CD34+GFP+ (top panel) and CD34-GFP+

(bottom panel) McSCs following adherent culture in neural crest differentiation medium. Scale bars: 50 μm. (F) Expression of

melanocyte lineage marker Tyrp1 among CD34+GFP+ (top panel) and CD34-GFP+ (bottom panel) McSCs following adherent

culture in melanocyte differentiation medium. In right two panels, brightfield images show pigmented melanocytes among cultured
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expressed in the majority of cells cultured in melanocyte differentiation medium derived either

from CD34+ or CD34- McSCs, although the percentage of Tyrp1-expressing cells was higher

in adherent cells derived initially from CD34- McSCs (Fig 4G). The diversity of neural crest

cell lineage markers expressed selectively by CD34+ McSCs suggested that these cells might

possess the capability of functioning as either a neural crest stem cell or as a non-melanocytic

neural crest-derived cell.

CD34+ McSCs also resemble skin-derived precursor cells (SKPs), or skin-derived stem

cells, that have been previously isolated from mammalian dermis insofar as they are skin-

derived, grow as spheroids in non-adherent culture conditions, and differentiate along multi-

ple neural crest lineages [28–30]. Establishing whether SKP differentiation closely resembles

the differentiation profile of CD34+ McSCs that we have previously demonstrated could pro-

vide insight into the relationship between SKPs and CD34+ McSCs. Given the ability of SKPs

to undergo glial differentiation [28, 29], we wondered whether the differentiation profile of

CD34+ McSCs, with their expression of multiple NCSC-associated genes, would most closely

resemble SKPs as a stem cell isolated from adult skin or a more primitive embryonic NCSC.

We compared the frequencies of distinct lineage markers expressed by CD34+ McSCs and

murine SKPs, grown first as non-adherent spheroids, then differentiated in neural crest differ-

entiation medium [31], to determine whether these cell populations are identical or merely

overlap. We included a comparison with embryonic neural crest stem cells (eNCSCs) with this

analysis. CD34+ McSCs expressed nestin, fibronectin, neuron-specific β-tubulin (Tuj-1), and

α-Sma at similar frequencies to murine SKPs (Table 1, S8 Fig). However, CD34+ McSCs

expressed p75/Ngfr at a much higher frequency than murine SKPs (86% vs. 3.5%). eNCSCs

expressed p75/Ngfr at a similar high frequency (65%). Both the Schwann cell/oligodendroglial

markers Gfap and CNPase were also more frequently expressed in CD34+ McSCs compared

to SKPs (44% vs 3% and 31% vs. 3%, respectively). eNCSCs expressed these markers at an

intermediate frequency (9% and 11%, respectively). When SKPs and CD34+ McSCs were

instead differentiated in SKP medium [32], CD34+ McSCs again expressed higher levels of

p75/Ngfr, Gfap, and CNPase than SKPs. SKP medium was unable to support the growth of

eNCSCs (S1 Table). Although CD34+ McSCs located in the telogen bulge did not express Gfap

in vivo (S9B Fig), expression could be observed in 34% of bulge McSCs following the onset of

CD34+GFP+ (top) and CD34-GFP+ (bottom) McSCs. Scale bars: 50 μm. (G) Quantification of neural crest-derived cell and

melanocyte marker expression frequency after cells were cultured in either neural crest differentiation (left) or melanocyte

differentiation (right) condition. For this experiment, all cells in each well were counted and this graph is a representative of 3

independent experiments.

https://doi.org/10.1371/journal.pgen.1008034.g004

Table 1. Comparison of neural crest lineage markers expressed by CD34+ McSCs, SKPs and eNCSCs using NCSC

medium.

eNCSCs SKPs CD34+ McSCs

p75/Ngfr 65.1% ± 12.6% 3.5% ± 0.3% 86% ± 2.8% �

Nestin 77.3% ± 11.6% 61.9% ± 0.8% 69% ± 7.8%

Fibronectin 68.3% ± 4.8% 64.5% ± 2.7% 85.5% ± 2.8%

Tuj-1 3.8% ± 2.8% 2.6% ± 0.7% 2.1% ± 1.8%

α-Sma 4.3% ± 3.4% 1% ± 0.4% 5.2% ± 0.9%

Gfap 9.4% ± 1.7% 3.1% ± 0.9% 43.6% ± 8% �

CNPase 11.3% ± 0.3% 2.6% ± 0.9% 31.4% ± 4.4% �

� Statistically significant differences between CD34+ McSCs and SKPs.

https://doi.org/10.1371/journal.pgen.1008034.t001
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anagen (S9A and S9C Fig). These data support a model whereby CD34+ McSCs represent a

subset of murine SKPs enriched for glial differentiation, and also mirror several defined prop-

erties of eNCSCs consistent with their profile as a neural crest-like stem cell.

De novo myelination of myelin-deficient, Shiverer neurons by CD34

+ McSCs

To determine whether CD34+ McSCs could recapitulate an activity of a neural crest-derived

cell type other than a melanocyte, we adapted a culture system, previously used to study the

ability of oligodendroglial cells (ODCs) to myelinate neurons in vitro [33], to assess their abil-

ity to function as glia. We isolated dorsal root ganglia (DRG) from either wild-type or C3Fe.

SWV-Mbpshi/shi/J (Shiverer, shi/shi) mice. Mice of the shi/shi genotype lack myelin basic pro-

tein (Mbp) and develop a “shivering” phenotype, or tremor, eventually dying between 3–4

months of age. CD34+ and CD34- McSCs, and rat ODCs as positive controls, were co-cultured

with neurites extending from wild-type or shi/shi DRGs and studied for their ability to express

Mbp, a marker of oligodendrocytes [34] and Schwann cells [35] in a neuronal distribution

(Fig 5A).

In co-cultures with rat DRGs, CD34+ McSCs selectively exhibited Mbp expression in their

vicinity in a neuronal pattern (Fig 5B), similar to the pattern of Mbp expression observed with

rat ODGs on shi/shi neurites as a positive control (S10E Fig). Furthermore, CD34+ McSCs

also selectively exhibited the ability to express Mbp along shi/shi neurites (Fig 5C), compared

with CD34- McSCs or no added cells. DRGs isolated from shi/shi pups for co-cultures were

from homozygous mutant shi/shi mice as confirmed by genotyping (S10C Fig). This result sug-

gested that CD34+ bulge McSCs selectively possess the ability to generate a de novo myelin

sheath. To determine the ability of CD34+ McSCs to generate compact myelin indicative of

functional myelination, co-cultures of CD34+ and CD34- McSCs with shi/shi DRGs were

again initiated, with resulting cultures examined using electron microscopy (EM) for evidence

of compact myelin surrounding neurites in the vicinity of McSC cell bodies (S10D Fig). EM

analysis of co-cultures of CD34+ McSCs revealed evidence of compact myelin in 6/8 culture

sections. In contrast, a loose myelin sheath was detected in only 1/8 CD34- McSC co-culture

sections, and no myelin sheath was observed surrounding shi/shi neurites when no McSCs

were added (Fig 5D).

To determine whether the ability of CD34+ McSCs to express Mbp was retained in vivo, we

transplanted fluorescent dye-labelled CD34+ and CD34- McSCs into the vitreal space of shi/
shi eyes (S11A Fig). The immunofluorescence signal of endogenous Mbp in WT eye was used

as a positive control (S11B Fig). The transplanted shi/shi eye sections were screened for fluores-

cent dye-labelled McSCs. To identify the injection site histologically, we found the disrupted

retinal pigmented epithelium (RPE) layer corresponding to the injection, (S11C Fig, right pan-

els), and focused on sections from this region to identify transferred, CTG-labelled CD34+

and CD34- McSCs. In 2/2 shi/shi eyes receiving CD34+ McSCs, CTG-labelled cells co-express-

ing Mbp could be observed (S11C Fig, top row). However, in 2/2 shi/shi mice receiving CD34-

McSCs we observed that CTG-labelled, CD34- McSCs do not co-express Mbp (S11C Fig, mid-

dle row). In a potentially more relevant neurodegenerative model, CD34+ and CD34- McSCs

were cultured as non-adherent spheroids and introduced intracranially into the brain tissue of

approximately 6–8 week-old shi/shi mice (n = 5, Fig 6A). Significant foci of Mbp expression

were principally detected in brains injected with CD34+ McSCs, at the site of CTG vital dye-

labeled CD34+ McSCs (Fig 6B and 6C). Quantification of co-localization of the CTG vital dye-

labeled cells with Mbp showed that co-localization was observed in 82% of CTG+ cells follow-

ing CD34+ McSC injection, versus 19% of CTG+ cells following CD34- McSC injection
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Fig 5. Myelination properties of CD34+ bulge McSCs. (A) Schematic of in vitro DRG co-culture system: CD34+, CD34- McSCs or

rat ODCs and DRG cells (isolated from rat E17 or P5 shi/shi mice) were co-cultured for one week and screened for myelination of

axons by immunofluorescence and by EM. Bottom panel shows a timeline of culturing DRG explants at Day 0, addition of McSCs

(experimental) and rat ODCs (positive control) at Day 7 and fixation of cells and analysis on day 14. (B & C) Co-cultures of CD34

+ or CD34- McSCs and rat eDRGs (B), or neonatal shi/shi DRGs (C). Arrows point to GFP-expressing cells, with solid arrow

representing CD34+ bulge McSCs and dotted arrow representing CD34- SHG McSCs. In (B), second and fourth rows represents

high magnification images of first and third row images. Scale bars: 50 μm. (D) Electron-dense myelin sheath formation around shi/
shi neurites when co-cultured with CD34+ or CD34- McSCs or no added cells using EM. In the right panels in either CD34+ or

CD34- McSCs co-cultured with shi/shi DRGs, high magnification images of the region marked with black box are shown. In the no

added cells sample images with shi/shi DRGs, right image is a high magnification of the left image. Arrow points to the dense myelin

sheath and “n” indicates neurites. Scale bars: 500 nm (non-magnified images) and 100 nm (high magnified images).

https://doi.org/10.1371/journal.pgen.1008034.g005
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Fig 6. In vivo glial differentiation potential of CD34+ bulge McSCs. (A) Schematic diagram depicting transplantation of CD34

+ or CD34- McSCs, after labelling with fluorescent CTG dye, intracranially into shi/shi mouse brain. At the end of the experiment,

shi/shi mice brains were assessed for the presence of CTG cells at 2 weeks post-injection. (B) Cranial sections of shi/shi brains

transplanted with CD34+ or CD34- McSCs show co-localization of Mbp expression in CTG-labelled CD34+ McSCs (solid arrows);

co-localization is absent following transplantation of CTG-labelled CD34- McSCs (dotted arrows). (C) Cranial section of shi/shi
brain transplanted with CD34+ McSCs shows individual CTG-labelled CD34+ McSCs co-expressing Mbp (top and bottom inset

boxes). (D) A section of myelin-deficient shi/shi mice brain receiving CD34+ McSCs depicts co-localization of Mbp with

neurofilament-H stained neurons in the surrounding vicinity of transplanted CTG-labelled CD34+ McSCs (arrowhead pointing

within inset boxes). Scale bars: 100 μm. (E) Quantification of co-localization of Mbp expression in CTG-labelled CD34+ McSCs in

cranial sections of shi/shi brains transplanted with CD34+ or CD34- McSCs. (�P� 0.01 analyzed by ANOVA; N = 5) (F)

Representative example of dense myelin sheath analyzed by transmission electron microscopy, surrounding neuron of CD34

+ McSC-transplanted shi/shi brain (arrowhead). Scale bars: 500 nm.

https://doi.org/10.1371/journal.pgen.1008034.g006
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(p<0.01, Fig 6E). Shi/shi brain that was not injected with cells as a negative control showed no

Mbp signal (S12A Fig). In addition, groups of CTG-labeled cells could be found in regions of

the central (Fig 6C) and caudal brain, following injection into a rostral site, perhaps indicating

some ability of injected cells to move or migrate following their introduction. Mbp expression

colocalizes with neurofilament H (NeuH), a neuronal marker [36], in these foci (Fig 6D). EM

analysis revealed evidence of dense myelin sheath surrounding neurons of CD34+ McSC-

transplanted shi/shi brain (Fig 6F and S12C Fig) similar to observations in the EM positive

control (S12D Fig) from Mbp-replete wild type mice (S12B Fig). All mice injected with CD34+

or CD34- McSCs survived the initial procedure, although in these experiments when the mice

were euthanized 2 weeks following injection, it was not possible to determine whether CD34+

McSCs extended the normal lifespan of shi/shi mice.

Discussion

Two distinct McSC populations, defined by CD34 expression, in the bulge and SHG of telogen

HFs were identified and characterized using Dct-H2BGFP mice. Candidate gene expression

analysis, melanocyte differentiation assays, enhanced efficiency of in vivo reconstitution of the

HF pigmentary unit, and comprehensive RNA-Seq profiling results showed that CD34- SHG

McSCs express melanogenic genes more highly and represent McSCs at a more advanced state

of melanocyte differentiation in comparison to bulge McSCs, thereby indicating bulge and

SHG McSCs are functionally distinct. Bulge CD34+ McSCs express an array of neural crest-

derived cell markers, including the glial marker Gfap, and undergo glial differentiation in cul-

ture. In co-culture with DRG neurites and in murine brain, they expressed Mbp in a neuronal

pattern similar to primary oligodendroglial cells and form a dense myelin sheath surrounding

the neuronal axon. These data indicate that CD34+ McSCs are not exclusively committed to

terminal melanocytic differentiation, readily producing myelin in a neural environment, a

property normally associated with myelinating Schwann cells or oligodendroglial cells of the

glial lineage. This could indicate that CD34+ McSCs contain glial cell precursors in addition to

melanocyte precursors, or bipotent or multipotent progenitor cells derived from neural crest.

Single-cell analysis will be required to understand further the heterogeneity and developmental

potential of CD34+ McSCs.

Our data are consistent with the description of activities of other skin-derived stem cells but

identify a specific cell with neural crest stem cell properties. These include studies which found

evidence of p75/Sox10+ neural crest-like cells in adult murine skin HFs [27] and nestin-GFP

expressing cells isolated from the HF bulge, which also exhibit the ability to express markers of

multiple neural crest lineages [37]. The pluripotent, nestin-expressing GFP cells isolated from

CD34+ HF bulge, which transdifferentiate largely into Schwann cells, were transplanted into

the gap region of severed sciatic nerve, greatly enhancing the rate of nerve regeneration and

restoring the nerve function [38]. Melanoblasts isolated from skin possess multipotency and

self-renewal capabilities. The Kit-positive and CD45-negative cells isolated from embryonic

melanoblast and neonatal skin HFs, when cultured on stromal cells, formed colonies contain-

ing neurons, glial cells and smooth muscle cells, together with melanocytes [39]. There is also

evidence for endogenous bipotent embryonic precursors to the glial and melanocyte lineage in

avians [40, 41] and in mice [41]. Our results demonstrate that a melanocyte lineage-specific

cell defined by Dct, Kit, and CD34 expression in the adult HF bulge represents a neural crest-

like stem cell in the skin and provide comprehensive, genome-scale characterization of its

expression profile.

The skin-derived stem cells (SDSCs) isolated from mouse and human skin [28–30] exhibit

glial cell differentiation and express Mbp in vitro similar to CD34+ McSCs isolated from HFs
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of Dct-H2BGFP mice. Mouse and human SDSCs from mammalian dermis grow as spheroids

in non-adherent culture, express nestin, and possess multipotency to generate neural and

mesodermal progeny [29]. When transplanted into shi/shi mice, SDSCs from human- and

mouse-derived Schwann cells repaired peripheral nerve damage and myelinated neuronal

axons of the dysmyelinated brain [42]. However, the cell of origin of these skin-derived cells

with unique regenerative properties has not yet been identified specifically. CD34+ McSCs

may represent a highly-specific subset of SDSCs. Although desert hedgehog (Dhh) is selectively

expressed by myelinating Schwann cells [43] it was not differentially expressed between the

two McSC subsets. This may reflect the fact that its expression is either only activated in the

peripheral environment, or that other factors may be responsible for hedgehog pathway activ-

ity in CD34+ McSCs as suggested by their higher expression of Gli1 (Fig 4B). Mbp expression

was higher in CD34+ McSCs, although the higher level of expression was not statistically sig-

nificant in the RNA-Seq profiles (S4 Table). Mbp could be detected both in vitro (Fig 5C) and

in vivo (Fig 6B) at low levels in cells derived from CD34- McSCs, although expression in these

environments was more robust and more clearly in a neuronal distribution when derived

from CD34+ McSCs. Nonetheless, robust myelination was correlated strongly with CD34+

McSCs in vitro (Fig 5D) and in vivo (Fig 6E and S12C Fig). Environmental cues are likely to

be extremely important for determining the terminal differentiation characteristics of CD34+

and CD34- McSCs in a manner that cannot be readily predicted from their extant gene expres-

sion profile differences. Our ability to define with specific cellular markers the identity of these

cells, not relying simply upon their growth characteristics and functional properties, will facili-

tate their comparison with McSCs in other species and enhance efforts to define highly-spe-

cific human skin-derived stem cell subsets with unique regenerative properties that can be

leveraged for these therapeutic purposes.

The unique properties of CD34+ McSCs in the bulge, with their ability to myelinate neu-

rons and express markers of non-melanocytic lineages, may be relevant to their role in this HF

region where Shh-expressing neurons approach the HF [44] and where the arrector pili muscle

attaches [45]. CD34+ McSCs may provide regenerative support to maintain the function of

these extrafollicular tissues in the HF environment. Although McSCs have previously been

described both in the bulge and the subbulge/SHG regions [2, 15, 46, 47], some recent studies

have emphasized selectively the contribution of the subbulge/SHG subset either in the follicu-

lar onset of proliferation and differentiation [7] or in UV-induced emergence from quiescence

and melanomagenesis [48]. These and other reports on McSCs have not distinguished between

the bulge and subbulge/SHG subsets and their distinct functional properties. Given the hetero-

geneity that has been described inherently in melanoma cells and their treatment-resistant

subpopulations [49], recognition of the variation in McSC phenotypes may be especially

important to further define the contribution of normal McSCs to cancer development.

Materials and methods

Ethics statement

All mouse procedures were approved by the Institutional Animal Care and Use Committee

protocol of the University of Maryland School of Medicine (IACUC protocols 0917008,

1014005).

Mice

Dct-H2BGFP mice that were generated by intercrossing Dct-tTA (Hprttm1[Dct-tTA-SV40p(A)]Hyk)

and TRE-H2BGFP (Tg(tetO-HIST1H2BJ/GFP)47Efu) mice (gift of E. Fuchs) to the homozy-

gous state were described previously [15]. C57BL/6-MitfMi-wh/Mi-wh homozygotes were
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obtained originally from Dr. Lynn Lamoureux, Texas A&M College of Veterinary Medicine,

and maintained on the C57BL/6 background by serial backcross. C3Fe.SWV-Mbpshi/shi/J

(shiverer, shi/shi; RRID: IMSR_JAX:001428); athymic Foxn1nu (nu/nu; nude); (Wnt1-Cre)

2Sor (Wnt1-Cre); Tg(Tyr-Cre/ERT2)13Bos, transgene insertion 13 (Tyr-CreER); and Gt

(ROSA)26Sortm14(CAT-tdTomato)Hze (R26-tdTomato) mice were purchased from The Jackson

Laboratories.

Isolation of HF McSCs from subepidermal skin and fluorescence activated

cell sorting (FACS)

Dorsal skin samples were obtained from transgenic mice at the indicated ages immediately fol-

lowing euthanasia and fat was removed from the dermis using fine forceps. Defatted skin was

incubated in 0.5% of trypsin (USB) dissolved in PBS at 37˚C for 30 min. Epidermis was peeled

away from the dermis following incubation, and the remaining dermis including HFs was cut

into small pieces. The dermal fragments were incubated in digestion medium containing 0.2

mg/mL Liberase Thermolysin low (Roche) in a 37˚C water bath for 45 to 60 min. The digested

dermal mixture was added into PBS containing 0.05% DNase (Sigma) and 5% FBS. Single cells

were extracted from the dermis by repeated plunging with a 60 mL syringe followed by filtra-

tion through 40 μm nylon mesh (BD Falcon). The dermal cell suspension is prepared in 5%

FBS/PBS prior to incubation with respective antibodies and FACS. This procedure was done

under aseptic conditions [15].

To separate the hair follicle bulge/LPP and SHG cells of Dct-H2BGFP bitransgenic mice

using FACS, the cell suspension was incubated with Alexa 647-conjugated anti-CD34 antibody

in for 30 min at 4˚C. 7-AAD was added to the CD34-labeled dermal cell suspension in 5%

FBS/PBS to discriminate between live and dead cells, and cell sorting was performed using BD

FACSAria1 (Becton-Dickenson) on a 100 μm nozzle at 20 psi low sheath pressure. Sorted cells

were counted and used either for primary cultures or for quantitative realtime PCR (qRT-PCR)

by extracting RNA from respective cell populations.

In vitro cell culture

For melanocyte differentiation medium (MDM) culture, 3000 cells of CD34+ or CD34-

McSCs at equal density were plated in 24 well plates with MDM containing 5% FBS, stem cell

factor (SCF; 50 ng/mL; Peprotech), endothelin-3 (20 nM; Sigma), basic fibroblast growth fac-

tor (bFGF; 2.5 ng/mL; R&D Systems), α-melanocyte stimulating hormone (α-MSH; 100 nM;

Sigma), phosphoethanolamine (1 M; Sigma), ethanolamine (10 M; Sigma), insulin (1 mg/mL;

Sigma) and 1% Penicillin/streptomycin in RPMI 1640 medium [50].

For culturing McSCs as spheroids in non-adherent culture conditions, 4000 cells of CD34+

or CD34- McSCs at equal density were placed in ultra-low attachment 24-well plates, with neu-

ral crest stem cell (NCSC) medium as described previously [31, 51] containing DMEM (low

glucose) (Gibco Life technologies), 30% neurobasal medium (Gibco Life technologies), 15%

chick embryo extract (US Biological), 2% B27 supplement (Gibco Life technologies), 1% N2

supplement (Gibco Life technologies), 117 nM retinoic Acid (Sigma), 50 μM β-mercaptoetha-

nol (Sigma), 20 ng/mL insulin-like growth factor (IGF; Sigma), 20 ng/mL bFGF (R & D

System) and 1% penicillin/streptomycin (Gibco Life technologies). For McSC cultures in

adherent conditions to evaluate neural crest lineage marker expression, cells were cultured in

30 μg/mL fibronectin-coated (Corning) 8-well chamber slides (Lab-Tek II, Nunc) in neural

crest differentiation medium, which is NCSC medium that instead contains 1% chick embryo

extract and 10 ng/mL bFGF, for 8 days as described previously [31].
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Rat glial precursor cells (Gibco Life technologies) were cultured on Poly-D-Lysine (Sigma)

coated plates in glial precursor cell growth (GPCG) medium containing KnockOut DMEM/F-

12, 2 mM Glutamax supplement, 2% StemPro NSC SFM supplement (Gibco Life technolo-

gies), 20 ng/mL bFGF, 20 ng/mL EGF (Promega), and 10 ng/mL PDGF-AA (eBioscience) as

per the manufacturer’s descriptions. To spontaneously induce differentiation of glial precursor

cells into mature oligodendroglial cells (ODCs), cells were cultured on Laminin (Sigma) and

Poly-D-Lysine coated plates in glial differentiation culture medium, defined as GPCG but

without PDGF-AA and bFGF.

For the comparison of CD34+ McSCs with murine SKPs and eNCSCs, these cell types were

grown as spheroids in NCSC medium or SKP medium for 7 days in ultra-low attachment

plates. The SKP medium consists of DMEM/F12 (Gibco Life technologies), B27 supplement,

40 ng/mL FGF, 20 ng/ml EGF and penicillin/streptomycin as described previously [32]. For

CD34+ McSCs, murine SKPs, and eNCSC adherent cultures to evaluate neural crest lineage

marker expression, cells were cultured in neural crest differentiation medium as described

above or SKP differentiation conditions for a week. SKP differentiation medium consists of

DMEM/F12, B27 supplement, 3% FBS and penicillin/streptomycin as described previously

[32]. For SKP studies, cells were isolated by preparing a dermal single cell suspension from

skin of C57BL6 mice at P56 as described above. For the isolation of eNCSCs, neural tubes were

isolated from Dct-H2BGFP embryos at E9.5 and then cultured in NCSC medium. After 24

hours of incubation at 37˚C, eNCSCs migrated away from the cultured neural tube and were

analyzed experimentally [51].

Dorsal root ganglion (DRG) co-cultures

Isolation and culture of DRGs from C3Fe.SWV-Mbpshi/shi/J (shiverer, shi/shi) pups was per-

formed as described previously [52]. Shi/shi pups (P5 to P8) were euthanized according to

institutional guidelines and the spine extracted. Excess muscle and bone from the spine was

trimmed away and the spine placed in a Petri dish ventral side up. Using dissection scissors

the spinal column was cut along the midline starting caudally in a longitudinal fashion. The

spinal column was gently opened by two pairs of forceps and the spinal cord exposed. Using

fine-tipped forceps the DRGs, found beneath and lateral to the spinal cord, were removed

and transferred to ice cold Hank’s buffered salt solution (HBSS) in a new Petri dish. DRGs

were transferred to a 1.5 mL centrifuge tube containing 500 μl of ice-cold HBSS and were

pelleted by spinning at 1200 rpm for 5 min at 4˚C. The supernatant was discarded and a

500 μL solution of pre-warmed DRG papain solution was added followed by incubation at

37˚C for 10 min. Following another light spin, the supernatant was discarded and 500 μL of

pre-warmed Collagenase A solution was added followed by incubation at 37˚C for 10 min.

Following another light spin and removal of supernatant, DRGs were washed twice with

1mL of DRGN media (DMEM containing 10% FBS). Finally, DRGs were dissociated by trit-

urating them with a BSA-coated glass Pasteur pipette. After dissociation, the suspension was

passed through a 40 μm filter into a sterile Petri dish containing 7 mL of DRGN media. This

suspension was incubated at 8.5% CO2 for 1h 15 min. At this stage many contaminating cells

including fibroblast and glial cells strongly adhered to the Petri dish, enriching cell suspen-

sion for DRGs. The cell suspension containing DRGs was collected by pelleting and cultured

in 10 μg/mL Laminin (and 30 μg/mL Poly-D-Lysine coated 24-well plates in DRGN media

at 8.5% CO2, 372 C overnight. The next day, DRGN media was replaced with OL media

(DMEM with 2% B27 supplement, 1% N2 Supplement, 1x glutamine, 0.5% FBS and 1% peni-

cillin/streptomycin) with 10 μM 5’-Fluoro-deoxyuridine (FuDR; Sigma) to prevent the pro-

liferation of contaminating fibroblasts and glial cells. On Day 5, full media was changed with
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OL media (without FuDR) and by Day 7, the DRGs had formed an extensive neurite bed,

ready for co-culture.

For DRG co-cultures, CD34+ or CD34- McSCs isolated from Dct-H2BGFP mouse skin or

rat oligodendroglial cells (ODC; Gibco Life technologies) were seeded onto the dense neuronal

bed generated either by shi/shi or rat embryonic DRGs. For co-cultures of CD34+ or CD34-

McSCs and shi/shi or rat embryonic DRGs, cells were cultured in neural crest differentiation

medium containing 10μM ascorbic acid to induce myelination. For co-cultures of rat ODCs

and shi/shi DRGs, cells were cultured in glial cell differentiation medium. After one week of

co-culture, cells were fixed and examined for Mbp expression by immunofluorescence and

myelin sheath formation by electron microscopy.

Intracranial and Intraocular transplantation of CD34+ and CD34- McSCs

FACS-sorted CD34+ or CD34- McSCs from Dct-H2BGFP mouse skin were grown as spher-

oids in NCSC medium for a week. After dissociating spheroids into a single cell suspension,

CD34+ and CD34- McSCs were labelled with a fluorescent dye, CellTracker Green (CTG)

(Molecular Probes) as per the manufacturer’s recommendations. For intracranial injections,

an incision of the skin was cut over the lateral skull and a 2 mm hole was drilled in the skull

over the hippocampus and the striatum of shi/shi brain. Intracranial injections [53] of CTG-

labelled CD34+ or CD34- McSCs in 5 μL PBS with a Hamilton syringe were performed into

the unilateral cranium of anesthetized 6–8 week old shi/shi mice. After the injections, the skin

is sutured with sterile nylon monofilament suture. Intraocular injections [53, 54] of CTG-

labelled CD34+ or CD34- McSCs in 5 μL PBS were performed into the vitreal space of anesthe-

tized 8 week old shi/shi mice. These procedures were performed under the auspices of an

approved Institutional Animal Care and Use Committee protocol of the University of Mary-

land School of Medicine. Control shi/shi mice were injected with 5 μL PBS only.

Additional information is available in the S1 Text: Supplemental materials and methods.

Supporting information

S1 Fig. Dct-H2BGFP-expressing melanocyte precursors in telogen HFs of mouse tail skin

and separation of bulge and SHG McSCs. (A & B) The Dct-H2BGFP-expressing McSCs in

CD34- SHG region (arrowheads, A) and P-cad+ SHG region (arrowheads, B) of telogen HFs

of mouse tail skin sections. In (A) arrows demonstrate Dct-H2BGFP-expressing interfollicular

epidermal melanocytes in tail skin of Dct-H2BGFP mouse. Scale bars: 50 μm. (C & D) P56

whole mount HFs of mouse tail epidermis demonstrating Dct-H2BGFP-expressing McSCs in

CD34+ bulge/LPP (arrowheads, C) and P-cad+ SHG regions (arrowheads, D). Scale bars:

50 μm. (E) Representative FACS sorting schemes are shown for isolation of bulge/LPP and

SHG melanocyte precursors based on GFP and CD34 expression from Dct-H2BGFP and wild

type mouse skin HFs. DP = Double positive, SP = Single positive and DN = Double negative.

(F) Reanalysis for the purity of CD34+GFP+ (bulge/LPP) and CD34-GFP+ (SHG) FACS

sorted melanocyte precursors. Reanalysis of sorted cell populations showed>91% CD34+GFP

+ and 97% CD34-GFP+ cells retained respective cell markers. (G) RNA quality of extracts

from sorted CD34+GFP+ and CD34-GFP+ cells. Bioanalyzer analysis of the total RNA

extracted from the FACS-sorted GFP+ melanocytes showed high quality RNA with intact 18S

and 28S ribosomal RNA bands.

(TIF)

S2 Fig. Co-localization of CD34 and Dct-H2BGFP-expressing melanocyte precursors in

different HF cycle stages of Dct-H2BGFP mice. The Dct-H2BGFP-expressing McSCs show

Functional heterogeneity of hair follicle McSCs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008034 April 24, 2019 18 / 25

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008034.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008034.s002
https://doi.org/10.1371/journal.pgen.1008034


co-localization with CD34 in different HF cycle stages of Dct-H2BGFP mice. First anagen (P8;

A), first telogen (P21; B), second anagen (P30; C), second telogen (P56; D) and third anagen

(P70; E). Scale bars: (A, C, E 100 μm) (B & D 50 μm). (A and B) Arrowheads in the inset

images depict the GFP+ nucleus and the surrounding CD34 expression in the individual chan-

nel and composite images. (F) Quantification of Dct-H2BGFP-expressing McSCs co-express-

ing CD34. For this experiment only upper and lower ORS Dct-H2BGFP-expressing McSCs

were counted and mature bulb Dct-H2BGFP-expressing melanocytes were eliminated.

(TIF)

S3 Fig. Co-localization of Tyr and Tyrp1 in Dct-H2BGFP-expressing mature HF melano-

cytes of Dct-H2BGFP mice. The Dct-H2BGFP-expressing mature melanocytes show co-local-

ization with Tyr (A) and Tyrp1 (B) in anagen HFs of Dct-H2BGFP mice at P30 whereas bulge

McSCs do not. Scale bars: 100 μm.

(TIF)

S4 Fig. The purity of FACS sorted cells by immunofluorescence: CD34+GFP+ express Kit

and CD34, whereas CD34-GFP+ cells express only Kit. To test the purity of FACS sorted

cells, CD34+GFP+, CD34-GFP+, CD34+GFP- and CD34-GFP- cells, prior to any cell culture

conditions, were directly cytospun onto the slide, fixed, and stained for Kit, CD34 and K14.

Co-localization of KIT (A) was observed among CD34+GFP+ and CD34-GFP+ FACS sorted

cells. In contrast, co-localization of CD34+ (B) was restricted to CD34+GFP+ and CD34

+GFP- sorted cells and (C) K14 a HF keratinocyte marker was restricted to CD34+GFP- and

CD34-GFP- sorted cells. Scale bars: 100 μm.

(TIF)

S5 Fig. In vitro and in vivo melanocyte differentiation potential of bulge and SHG McSCs.

(A) & (B) Supplementary information for Fig 3B. (A) The images show three different catego-

ries used to quantify differentiation potential of bulge and SHG McSCs: Round cells (top

panel), dendritic cells (middle panel) and pigmented cells (bottom panel). (B) Quantification

of total GFP-expressing cells of CD34+ and CD34- McSCs when cultured in melanocyte cul-

ture condition at Day 4 and Day 7. (�P� 0.01, ��P Value� 0.05 by ANOVA) (C) Immunoflu-

orescence staining shows identification of GFP-expressing McSCs in CD34+ bulge (arrow

head) and CD34- SHG (arrow) HFs of the skin grafts receiving either CD34+GFP+ or

CD34-GFP+ McSCs at 2 months post-surgery. Scale bars: 50 μm.

(TIF)

S6 Fig. Differential expression of genes from RNA-Seq analysis of CD34+ and CD34-

McSCs. (A) Heatmap using sample clustering shows distinct differential gene expression

pattern between CD34+ and CD34- McSCs. Red represents high expression of genes and

blue represents low expression of genes (upper panel). MA plot of differentially expressed

genes identified in CD34+ and CD34- McSCs. Data represent individual gene responses

plotted as log2 fold-change CD34+/CD34- versus mean of normalized counts. FDR <0.02

was used as a cutoff to determine significant differential gene expression between two cell

types. Positive and negative change represents the up-regulated genes in CD34+ and CD34-

McSCs respectively and are highlighted in red (lower panel). (B) RT-PCR results show and

validate higher expression of melanogenic genes and transcription factors: Pax3, Slc45a2,

Erbb3 and Sox10 in CD34-/SHG McSCs (�P� 0.01 by ANOVA). (C) Likewise, CD34+/bulge

McSCs show higher expression of neural crest stem cell markers like Ngfr, Bmp7 and Gli1
(�P� 0.01 by ANOVA).

(TIF)
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S7 Fig. Classification of differentially expressed genes between CD34+ and CD34- McSCs

into various canonical pathway categories by IPA. The figure depicts the highest 60 catego-

ries of the display that summarizes all 435 canonical pathways based on IPA of 3,220 differen-

tially expressed genes (P value� 0.01) between CD34+ (bulge) and CD34-(SHG) McSCs. The

orange line indicates the likelihood (-log(p-value)) that the genes in a specific category are dif-

ferentially expressed. The stacked bar graphs show the percentage of genes that are upregulated

in CD34+ McSCs (red), are downregulated in CD34+ (green) or have no overlap between the

2 McSC subsets (white). The selected top section of the graph highlights categories related to

neural crest stem cells like ‘axonal guidance signaling’, ‘human embryonic stem cell pluripo-

tency’, ‘role of NANOG in mammalian embryonic stem cell pluripotency’ and ‘mouse embry-

onic stem cell pluripotency’. In these categories, a higher number of genes is upregulated in

CD34+ McSCs compared to CD34- McSCs. Similarly, the figure also shows the ‘melanocyte

development and pigmentation signaling’ category where approximately half the genes are

upregulated in CD34+ McSCs while the other half are upregulated in CD34- McSCs.

(TIF)

S8 Fig. Comparison of cultured CD34+ McSCs with SKPs and eNCSCs. (A) CD34+ McSCs,

murine SKPs and eNCSCs are grown as spheroids in NCC medium and SKP medium for 7

days. The efficiency of spheroid formation is provided at the top of each panel (N = 3). Scale

bars: 100 μm. (B, C, D and E) Cells are then differentiated in neural crest differentiation

medium (B and C) and SKP differentiation medium (D and E). Marker comparison is per-

formed at early (24 hours) and late (1 week) timepoints. Immunofluorescence staining of p75,

nestin and fibronectin at the early differentiation stage (B and D) and α-Sma, Tuj1, Gfap and

CNPase at the late differentiation (C and E). Scale bars: 75 μm.

(TIF)

S9 Fig. GFP-expressing McSCs in upper bulge region of anagen HF co-express Gfap. (A)

GFP-expressing cells co-express Gfap (inset boxes) in the upper bulge region of growing ana-

gen HFs in Dct-H2BGFP mice at P70. In the image, bracket depicts a distinct Gfap stained

upper bulge region of elongating HF in Dct-H2BGFP mice. (B) In telogen HF of Dct-H2BGFP

mice at P56, the bulge GFP-expressing cells lack Gfap expression (dotted arrow). (C) Quantifi-

cation data show 34% of bulge Dct-H2BGFP-expressing cells reveal co-localization with Gfap

at the onset of anagen in Dct-H2BGFP mice at P70. For this experiment, only upper and lower

ORS Dct-H2BGFP-expressing McSCs were counted and mature bulb Dct-H2BGFP-expressing

melanocytes were eliminated.

(TIF)

S10 Fig. CD34+ bulge McSCs exhibit neuronal stem cell marker nestin and co-cultures of

McSCs and shi/shi DRGs. Comparison of expression of nestin mRNA (A) and protein (B)

among CD34+ bulge and CD34- SHG McSCs. (C) Genotyping to identify shi/shi pups which

were further used to isolate DRGs at P5 to P8. For each of two separate experiments, an indi-

vidual litter was genotyped as shown in top and bottom panel. (D) A representative image for

GFP-expressing cells (CD34+ or CD34- or no cells) co-cultured with neurites generated from

DRGs isolated from shi/shi pups. After the localization of GFP-expressing cells in their repre-

sentative cultures, cells were then fixed and analyzed with EM. (E) Co-cultures of ODCs and

neonatal shi/shi DRGs as positive control. The top row depicts Mbp expressed by ODCs (left

panel) and Tuj1 expressed by shi/shi axonal outgrowths (center). At bottom row, high magnifi-

cation images of the region marked with white box are shown; they depict Mbp deposition

along a Tuj1-expressing shi/shi axon.

(TIF)
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S11 Fig. Transplantation of CD34+ McSCs in shi/shi mice eye. (A) Transplantation of CD34

+ or CD34- McSCs, after labelling with fluorescent CTG dye, into the vitreous space of shi/shi
mouse eye for 10 days. (B) Immunofluorescence for the endogenous expression of Mbp

around the retinal layer (arrow) and ciliary body (arrow head) in wild type mouse eye. (C) Ret-

inal sections of shi/shi eyes transplanted with CD34+ or CD34- McSCs show co-localization of

Mbp expression in CTG-labelled CD34+ McSCs (solid arrows), whereas there is no evidence

of Mbp expression in CTG-labelled CD34- McSCs (dotted arrows). Arrowhead points to the

injection site in each image. The bottom panels represent a no cell-injected retinal section

from control shi/shi mice. Scale bars: 100 μm.

(TIF)

S12 Fig. Mbp expression and myelin sheath formation in brain sections of shi/shi and WT

mice. (A) Cranial sections of shi/shi brains not receiving transplanted cells show lack of Mbp

expression. Scale bars: 50 μm. (B) Cranial sections of wild-type brains (positive control) show

high expression of Mbp and its expression was co-localized with neurofilament H (NeuH)-

expressing neurons. Upper panel is a high magnification image and bottom is a low magnifica-

tion image. Scale bars: 50 μm. (C) TEM image shows dense myelin sheath image of brain sec-

tions receiving CD34+GFP+ cells whereas there is lack of myelin sheath formation in brain

sections of shi/shi mice receiving no cells. (D) TEM image shows dense myelin sheath around

neurons of brain sections of wild-type mice whereas lack of myelin sheath formation in brain

sections of shi/shi mice receiving no cells. Scale bars: 500 nm.

(TIF)

S1 Table. Comparison of neural crest lineage markers expressed by CD34+ McSCs, and

SKPs using SKP medium.

(DOCX)

S2 Table. Differentially expressed genes between CD34+ and CD34- McSCs. The attached

Excel file includes the alignment statistics, differential expression (DE) summary and the cor-

responding data sheets. Samples used for RNA-seq for both CD34+ and CD34- McSCs are in

triplicates. From 100 base pair reads, DE analysis was performed with the results filtered to

include only those that met an FDR cutoff of 0.01, read count percentile (RCP) of 25%, and

a log fold change (LFC) change of 1 or -1. With the RCP set at 0.25, the lower limit cutoff for

DE was set to the normalized read count of 16.93. The data sheet lists all the 3,220 DE genes

between the 2 McSC subsets identified using mentioned parameters.

(XLSX)

S3 Table. Ingenuity Pathway Analysis (IPA) of canonical pathways between CD34+ and

CD34- McSCs. The Excel file lists differentially expressed genes between CD34+ and CD34-

McSCs in various canonical pathway categories according to Ingenuity Pathway Analysis

(IPA) results. The table lists all canonical pathway categories, their–(log p-value), ratio, z-

score, downregulation (in CD34+ McSCs compared to CD34- McSCs), no change, upregula-

tion (in CD34+ McSCs compared to CD34- McSCs) and no overlap DE genes percentages. It

also lists all the DE molecules in each canonical pathway category.

(XLS)

S4 Table. Raw counts for all genes for CD34+ and CD34- McSCs that were generated by

HTSeq-count. The Excel file comprises of two separate spreadsheets: (a) with all gene counts

and (b) without genes with zero counts for all six samples (3 CD34+ McSC samples and 3

CD34- McSC samples).

(XLSX)
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S5 Table. Raw data and statistical analysis used to generate graphs.

(XLSX)

S1 Text. Supplemental materials and methods.

(DOCX)
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