Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum–mitochondrial contacts

Il-Taeg Cho¹, Guillaume Adelmant², Youngshin Lim¹, Jarrod A Marto¹,², Ginam Cho¹, and Jeffrey A. Golden¹*

¹Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; ²Department of Cancer Biology, Department of Pathology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.

Running title: RTN1A promotes ER-mitochondria contacts

*To whom correspondence should be addressed: Jeffrey Golden, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street Boston, MA 02115
Email: jagolden@bwh.harvard.edu

Key words: Engineered ascorbate peroxidase (APEX), Interorganelle communication, ER-mitochondria contacts (EMCs), RETICULON (RTN).

ABSTRACT

To maintain cellular homeostasis, subcellular organelles communicate with each other and form physical and functional networks through membrane contact sites (MCS) coupled by protein tethers. In particular, endoplasmic reticulum (ER)-mitochondria contacts (EMC) regulate diverse cellular activities such as metabolite exchange (Ca²⁺ and lipids), intracellular signaling, apoptosis and autophagy. The significance of EMCs have been highlighted by reports indicating that EMC dysregulation is linked to neurodegenerative diseases. Therefore, obtaining a better understanding of the physical and functional components of EMCs should provide new insights into the pathogenesis of several neurodegenerative diseases. Here we applied engineered ascorbate peroxidase (APEX) to map the proteome at EMCs in live HEK293 cells. APEX was targeted to the outer mitochondrial membrane, and proximity-labeled proteins were analyzed by stable isotope labeling with amino acids in culture (SILAC)-LC/MS-MS. We further refined the specificity of the proteins identified by combining biochemical subcellular fractionation to the protein isolation method. We identified 405 proteins with a 2.0-fold cut-off ratio (log base 2) in SILAC quantification from replicate experiments. We performed validation screening with a Split-Rluc8 complementation assay that identified RETICULON1A (RTN1A), an ER-shaping protein localized to EMCs as an EMC promoter. Proximity mapping augmented with biochemical fractionation and additional validation methods reported here could be useful to discover other components of EMCs, identify mitochondrial contacts with other organelles, and further unravel their communication.
INTRODUCTION

Interorganelle communication has emerged as a critical physiologic function required to maintain cellular homeostasis. The functional interplay between cellular organelles is mediated through the membrane contacts formed by protein tethers within the membranes of the two organelles holding them in close proximity (1-4). Different forms of membrane contacts display a wide variety of functions depending on the organelles involved and the types of membrane contacts. For instance, the endoplasmic reticulum and mitochondria contacts (EMC) are the hub for Ca\(^{2+}\) exchange, phospholipid exchange, autophagy, mitochondrial biogenesis, and ER stress response (5-10). At ER-Plasma membrane junctions, in addition to Ca\(^{2+}\) and lipid transport, cell signaling regulation and ER shaping occurs (11-13). Bi-directional lipid trafficking and secretion of proteins are well known to occur at the point of ER and Golgi juxtaposition (14-16). In yeast, mitochondrial attachments to plasma membranes are important for mitochondrial fission and partitioning in cell division (17,18).

Membrane contacts are established by interactions between proteins presented on the outer surface of each organelle, allowing subdomains of membranes to appose each other within 10 nm to 50 nm but without fusion (1,3,19). Likely due to their important roles in cellular homeostasis, defects in regulation of these contacts, have been linked to several human diseases. For example, overexpression of Familial Alzheimer’s Disease (FAD) associated presenilin 2 mutations significantly increase EMCs and causes an imbalance of intracellular Ca\(^{2+}\) homeostasis (20,21). Overexpression of hereditary spastic paraplegia-associated REEP1 mutations impairs the level of ER-mitochondria contacts and results in neuritic degeneration in cortical neurons (22). Missense mutation (P56S) in the integral ER membrane protein vesicle-associated membrane protein-associated protein B (VAPB) has been linked to atypical amyotrophic lateral sclerosis (ALS8). P56S mutations impair ER-Golgi vesicle trafficking and perturb Ca\(^{2+}\) handling by ER-mitochondria contacts formed by VAPB and outer mitochondrial membrane proteins like protein tyrosine phosphatase-interacting protein 51 (PTPIP51) (23-25). Another example is BAP31. This multifunctional protein forms an apoptosis platform with Fission 1 homologue (Fis1) at ER-mitochondria contacts, controls quality of newly synthesized proteins in the ER, and regulates TCR signaling for T cell activation. Mutations in BAP31 have been linked to X-linked intellectual disabilities with severe phenotypes such as deafness, dystonia, congenital microcephaly (26-29). Finally, dysregulation of EMCs, resulting from mutations in various proteins participating in contact between these two organelles, has been extensively linked to neurodegenerative diseases (30-34).

Understanding the cellular physiology and underlying mechanisms governed by interorganelle communication is crucial to gain new insights into potential therapeutic opportunities. Unfortunately, no well-defined screening assay existed in mammalian cells. Although genetic screening has been fruitful in identifying EMCs in yeast, both similarities and differences exist in mammalian cells. For instance, components of the ER-mitochondria encounter structure (ERMES) complex in yeast were identified and characterized through a genetic screen in which lethal mutant strains were isolated by expressing synthetic ER-mitochondria bridge protein (35). The ERMES
complex was found to be composed of ER membrane protein (Mmm1), two outer mitochondrial membrane proteins (Mdm10, Mdm34) and a cytosolic protein (Mdm12) (35-37). Unfortunately, none of the orthologs of ERMES complex has been identified in mammalian cells. Herein we have developed a systematic approach to identify protein components associated with EMCs in mammalian cells.

To identify proteins that coordinate EMCs, we have adopted the proximity labeling technique using engineered ascorbate peroxidase (APEX). APEX-mediated labeling, has proven to be a powerful tool for labeling proteins in live cells (38). It has been successfully used to map the proteome of the mitochondrial intermembrane, ER-PM junctions, and proteome of primary cilia (13,39-43). To capture proteins associated with EMCs, we fused a mitochondria targeting sequence to APEX and expressed it in HEK293 cells. We utilized SILAC-based quantitative LC-MS/MS to identify proteins enriched following APEX labeling. We identified 405 proteins across two independent replicates, including RETICULON1A (RTN1A), an ER shaping protein localized to EMC. We further validated that RTN1A function in EMC using a live cell assay. All together we have characterized a new function for RTN1A and we have defined a method to identify proteins important in inter-organelle contacts. These data provide new insights into several human diseases and new potential targets for therapy.

RESULTS

Targeted expression of APEX to mitochondrial outer membrane (Mit-APEX)

To identify potential target proteins associated with ER-mitochondria contacts we used the experimental scheme depicted in Figure 1A. Mit-APEX cannot label ER proteins when the respective membranes are separated by more than approximately 20 nm (41,44,45). At EMC sites, both ER and mitochondrial proteins will be labeled (Fig.1A, contact). In contrast, when ER and mitochondrial members are not juxtaposed, the APEX system only labels mitochondrial proteins (Fig. 1A, no contact). We thus anticipate the proteins identified will include not only ER-mitochondria tethering proteins but also ER and mitochondrial proteins that are not directly engaged in EMC but may still play a functional role.

pcDNA3.1-Mit-APEX was transfected in HEK293 cells and protein expression was determined to be stable (Fig. 1B). A single band was detected by western blot when probed with an α-flag antibody indicating strong expression and no obvious degradation products. Next we confirmed the mitochondrial localization of Mit-APEX. Mit-APEX expressed in HeLa cells showed clear localization to mitochondria as assayed by overlapping expression between FLAG (Mit-APEX) and TOM20 (a subunit of the outer mitochondrial membrane protein complex) (Fig. 1C). Finally, we examined the biotinylation activity of Mit-APEX. Proximity labeling was done essentially as previously described (41). Whole cell lysates obtained from HEK293 cells expressing Mit-APEX were subjected to SDS-PAGE and biotinylated proteins were probed with streptavidin-HRP. In the absence of Mit-APEX, no biotin labeling was detected (Fig. 1D, lanes 1 and 2). However, in the presence of Mit-APEX and the biotin substrate (but not in the absence of this substrate), strong biotinylation was present (Fig. 1D, lanes 3 and 4). Moreover we
compared our Mit-APEX targeted to outer mitochondrial membrane with APEX expressed in the mitochondrial matrix (41); they showed distinctive biotinylation patterns indicating specificity to the Mit-APEX targeting (data not shown). Finally, we performed pilot proximity labeling to know whether Mit-APEX can label known ER-mitochondria tethers, Inositol 1,4,5'-triphosphate receptor II (IP3RII) calcium channel, vesicle-associated membrane protein-associated protein B (VAPB) and B-cell receptor-associated protein 31 (BAP31). As predicted, Mit-APEX labeled those ER-mitochondria tethering proteins, which is likely at EMCs. Taken together, these data indicate we successfully targeted an active and stable form of APEX to the outer mitochondrial membrane, and it is suitable for mapping proteins at EMCs.

Purification of proteins proximity-labeled by Mit-APEX after SILAC and biochemical subcellular fractionation

To facilitate the identification of proteins labelled by APEX at the ER-mitochondria interface, we adopted a quantitative LC-MS/MS approach relying on stable isotope labeling with amino acids in culture (SILAC)(46-48). HEK293 cells were equilibrated in light or heavy isotope containing medium for a minimum of five passages, with the efficiency of isotope incorporation assessed by mass spectrometry (See Fig. 2A for experimental protocol). Excess proline was used as a supplement (200 mg/L) to prevent the metabolic conversion of heavy arginine to heavy proline (49). Cell cultures equilibrated in SILAC media were either mock transfected (SILAC-light) or transfected with pcDNA3.1-Mit-APEX (SILAC-heavy). An independent biological replicate with a reverse labeling strategy was also prepared. After labeling with heavy amino acids, proximity labeling by Mit-APEX was performed as described in the materials and methods, then the microsomal fraction, containing ER, was isolated from cells by differential centrifugation, the biotinylated proteins recovered from the microsomal fractions by releasing them from streptavidin-magnetics beads, and this was followed by LC/MS-MS analysis (Fig. 2A). Western blotting after biochemical fractionation validated that most proteins from the cytosol (Tubulin) and nucleus (TCF7L2) were removed, whereas ER proteins (Calnexin) and some mitochondrial proteins (ATP5A) were retained (Fig. 2B). We next compared biotinylation patterns in each fraction and found a nice separation of microosomal fractions and biotinylated proteins (Fig. 2B, Streptavidin-HRP). As a final quality control step prior to mass spectrometry analysis, a separate protein purification was performed from control and experimental samples and eluted proteins were subjected to SDS-PAGE/silver staining (Fig. 2C).

Proximity labeling by Ascorbate Peroxidase (APEX) identified RTN1A as a promoter of ER-Mitochondrial contacts

Mass spectrometry identified approximately 1,100 proteins that were common to experiment 1 (control cultured in light isotope, Mit-APEX in heavy isotope) and experiment 2 (control cultured in heavy isotope, Mit-APEX in light isotope). To further identify significantly enriched proteins, we analyzed SILAC results based on fold enrichment ratios instead of comparing abundance among proteins because the absolute level of proximity-labeled proteins is dependent on the
numbers of tyrosine residues accessible by biotin phenol radicals. To determine cut-off ratio, we normalized both replicates using quantile normalization method in R (RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/). Cut-off ratios was determined by the fold change of IP3Rs (2.0 of log base 2), a known EMC tether. Applying a 2.0-fold cut-off ratio (log base 2), we identified 405 overlapping proteins in the two experiments (Table 1). A gene ontology (GO) analysis was performed using Functional Enrichment analysis tool, Funrich (50). For GO term cellular component (CC) definitions, the top 15 clusters (p-value < 0.05) are reported (Fig. 3B).

In the CC, cytoplasmic (66.3%) cluster was omitted and sub-terms were presented to show greater specificity of the results (Fig. 3). In total, 88 proteins were annotated to ER by Funrich (Table 1). Among the proteins, we identified Inositol 1,4,5'-triphosphate receptor II (IP3RII) calcium channel, vesicle-associated membrane protein-associated protein B (VAPB) and B-cell receptor-associated protein 31 (BAP31), each well-known ER-Mitochondria tethers. The presence of the tethers in our screen were confirmed by western blotting (Fig. 4B).

The ATLASTIN (ATL2) and RETICULON (RTN1, RTN3) ER-shaping proteins were identified as interesting novel targets because of their known role in regulating ER structure which is likely critical in forming EMCs. Furthermore, a study in yeast showed ER-shaping proteins facilitate lipid transfer from ER to mitochondria, which occurs at EMCs (51). When Fold changes in SILAC are compared, RTN1A (2.7 fold increase), was higher than the known EMC tether IP3RII (2.0 fold in replicates 1 and 2) and VAPB (2.3 fold). For all of these reasons we chose RTN1A was an important protein to study.

The coordinated action of ATLs and RTNs is important for forming and stabilizing tubular ER-structure (52-55). However, little is known regarding their role in EMCs in mammals. To test whether ATLs and RTNs affect ER-mitochondria contact, we used our Split Rluc8 complementation assay to test ATLs and RTNs (Fig. 4A). Notably, RTN1A created a 4.4 fold increase in ER-Mitochondria contacts (Fig. 4D), but no change was observed with ATLs (data not shown). RTN2B (2.5 fold) and RTN3B (1.3 fold) showed small but statistically significant fold increases in EMCs. Taken together, these results indicate RTN1A has a role in forming ER-mitochondria contacts.

Interestingly, we noticed that RTN1A, which has a longer N-terminus than the other RTN family members RTN1C, RTN2B, and RTN3B, showed higher Split-Rluc8 activity (ER-mitochondria contacts, Fig. 4C and D). We postulated that the N-terminus of RTN1A might have an important role in ER-mitochondria contacts. To test this, we used N-terminal (1-568 a.a) deletion construct of RTN1A (RTN1A-ΔN568) and a N-terminus of RTN1A (1-568 a.a)-RTN3B fusion construct (RTN1A-N568-RTN3B). The N-terminal deletion construct of RTN1A showed minimal activity, whereas the RTN1A-RTN3B fusion construct increased EMCs (Fig. 4C and E). Consistent with the split-Rluc8 complement assay results, N-terminal deletion of RTN1A significantly reduced the level of biotin labeling by Mit-APEX, but full length RTN1A was enriched (Fig. 4F). These data indicate the N-terminus of RTN1A is critical for this activity but it does require the C-terminus from a RTN family member.
DISCUSSION

The cell’s cytoplasm is tightly packed with organelles, macromolecules and small molecules (56,57). Communication between the organelles is highly orchestrated and essential for normal cellular homeostasis (1-3,58). Indeed, a growing body of evidence indicates that a defect in inter-organelle communication may play a role in the pathogenesis of multiple human diseases (30,33,59,60). More specifically, abnormalities associated with EMCs have been reported to be linked to multiple neurodegenerative disorders (20,30,61). However, the pathologic mechanisms underlying these disorders remain to be fully clarified. Identifying the full repertoire of proteins regulating ER-mitochondria contacts and understanding molecular events occurring between ER and mitochondrial contacts are critical to developing potential therapeutic strategies.

In this study, we applied proximity labeling using engineered ascorbate peroxidase (APEX) to identify proteins that exist within ER-mitochondrial contacts. The short half life (< 1 ms) and small labeling radius (< 20 nm) of the biotin-phenoxyl radical converted by APEX, enable capture of proteins located in close proximity in live cells (13,39-43). To capture proteins associated with ER-mitochondria contacts, we targeted APEX to the outer mitochondrial membrane in HEK293 cells, enriched the microsomal fraction and purified biotinylated proteins using Streptavidin-magnetic beads. Although proximity labeling by APEX is highly specific, a combination of SILAC labeling and biochemical purification improved the specificity of targets identified by proximity labeling, particularly when APEX is exposed to the outside of membrane-enclosed cellular compartments. Indeed, inclusion of a fractionation step removed a large portion of cytosolic, nuclear, and mitochondrial biotinylated proteins (see Fig. 2B).

LC-MS/MS analysis identified 405 proteins overlapping from replicate experiments with a cut-off ratio 2.0 (log base 2). In total 88 proteins were annotated to the ER by Funrich (Table 1). Identification of Inositol 1,4,5'-triphosphate receptor II (IP3RII) calcium channel, vesicle-associated membrane protein-associated protein B (VAPB) and B-cell receptor-associated protein 31 (BAP31), all well-known ER-Mitochondria tethers, demonstrated the robustness of our approach (Table 1 and Figure 4B). Unexpectedly, we did not identify mitofusin 2 (MFN2), which is known to participate in EMC. It is possible electron-rich residues such as tyrosine in MFN2 might not be accessible by phenoxyl radical. For instance, the electron rich residues could be masked by interacting proteins with MFN2.

RTNs are a group of evolutionarily conserved proteins residing predominantly in the ER, despite not containing a known ER localization sequence (52,53). RTNs share highly conserved C-terminal reticulon homology domain (RHD), but their N-terminal domains are divergent in length and sequence. The N-terminal domain of RTN1A (isoform A, the longest form) might have a specific role in bridging ER-mitochondria in addition to formation of tubular ER given that RTN1C and RTN3B (shorter forms of RTNs among those tested) showed minimal effect on induction of ER-mitochondria contacts (see Fig. 4C and 4D). Indeed, our data showed the N-terminus (1-568 a.a) of RTN1A has a functional role in coupling EMCs. This result suggests that RTN1A has several functions in its N-terminus.
beyond its conserved role in ER shaping. Differential up and down-regulation of RTNs have been linked to neurodegenerative diseases (e.g. Alzheimer’s disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as hereditary spastic paraplegia) (62-64). RTN1A has been implicated in the onset of several neurodegenerative diseases, however, what role at plays is unknown (62,65). Disease-linked mutations in RTN1A, specifically in its N-terminus, have not been reported. RTN1A appears to be overexpressed in some chronic kidney diseases, which is thought to increase ER stress (66). Since ER-mitochondria contacts are linked to ER-stress, the unfolded protein response and the formation of autophagosomes, we speculate that dysregulation of RTN1A expression might possibly be related to the onset of the disease. Although further studies are required to elucidate the exact function of RTN1 in EMCs, we suggest that dysregulation of EMCs caused by the ER-shaping protein RTN1A might underlie several neurodegenerative diseases.

The microsomal fraction we used in this study includes vesicle-like artifacts reformed from pieces of the endoplasmic reticulum (ER) but also membrane vesicles formed from any membrane structure that was soluble after centrifugation. Because the artificial vesicles could be formed with pieces of membrane derived not only from ER, but mitochondria, Golgi, plasma membrane, nuclear envelope, etc, thus the microsomal fraction we obtained is heterogeneous. We adopted the terminology first used when the protocol was first published to avoid any confusion (67).

Interestingly, the cellular component (CC) analysis significantly clustered membrane enclosed organelles including endoplasmic reticulum, mitochondria, lysosomes, exosomes and nuclei. These data suggest mitochondria make contacts with many other organelles, as expected, and the proteins on them can be mapped by Mit-APEX at the moment they come in close proximity. CC analysis also identified microtubule components, which are likely due to the association of mitochondrial and microtubules for regulation of mitochondrial motility and fusion/fission. Interestingly, ribosome, ribonucleoprotein complex and translation initiation complex were enriched, implying that protein translation activity is also closely related to the outer mitochondrial membrane. Gene set enrichment analysis using Funrich clustered the majority of proteins into membrane bound compartments indicating that mitochondria establish contacts with many different organelles. Previous studies support these results. For example, ER-mitochondrial contacts have been most extensively studied and linked to Ca\(^{2+}\) and lipid exchange, intracellular trafficking of ER and mitochondria, ER stress response, autophagy, mitochondrial biogenesis, and inflammasome formation (5-7,10,34,68-71). Peroxisomes and mitochondria functionally and physically interact to maintain lipid homeostasis through β-oxidation of fatty acids and scavenging reactive oxygen species (72,73). Mitochondria are also known to form stable contacts with Golgi and the nuclear envelope (74,75). Although little is known regarding mitochondria and plasma membrane contacts, the Num1/Mdm36 complex was discovered as tethering complex in yeast (17,76). Interestingly, our screen identified stromal interaction molecule 1 (STIM1), which is involved in regulation of store-operated Ca\(^{2+}\) entry (SOCE) at ER-PM junctions. This raises the question whether mitochondria might have a role in SOCE (13).
In conclusion, we have successfully applied proximity labeling by Mit-APEX to discover candidate proteins localizing at the contact sites between mitochondrial and other organelles. We have identified and demonstrated that RTN1 increases EMCs. Although we focused on one identified EMC protein, we realize there are many additional candidates derived from our assay, including those localized at the contact sites between mitochondria and other membrane-surfaced organelles such as the Golgi apparatus, peroxisome, and nucleus.

EXPERIMENTAL PROCEDURES

Plasmid constructs

The APEX targeted to the outer mitochondrial membrane was made in pcDNA3.1. APEX (Nat Biotechnol. 2012 Nov; 30(11): 1143–1148). It was fused with the mitochondria-targeting sequence derived from mouse mitochondrial A-kinase anchor protein 1 ((5), AKAP1, residues 34–63: M A I Q L R S L F P L A L P G L A L L G W W W F F S R K K) using the pcDNA3.1 Directional TOPO Expression Kit to generate pcDNA3.1-Mit-APEX. To detect Mit-APEX, flag-tag (DYKDDDDK) was inserted in between AKAP1 peptide and APEX. RETICULONs (RTN1A; isoform A, RTN2B; isoform B, RTN3B; isoform B) were PCR-amplified using HEK293T cDNA and cloned into pcDNA3 (BamHI, NotI) by GeneArt Seamless cloning method (Thermo Fisher Scientific). RTN1A-DN568 and RTN1A-N568-RTN3 fusion construct was generated using pcDNA3-RTN1A or pcDNA-RTN3B as templates.

Cell culture, SILAC and proximity labeling by Mit-APEX

HEK293T cells (American Type Culture Collection, Manassas, VA) were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen, CA), with 10% fetal bovine serum (Invitrogen, CA) at 37°C with 5% CO₂. For SILAC, HEK293T cells were metabolically labeled with Heavy L-arginine and L-lysine using SILAC Protein Quantitation Kits (ThermoFisher Scientific, DMEM). The labeling efficiency was assessed by mass spectrometry before experiments were performed. Fully labeled HEK293T cells were cultured at 37°C with 5% CO₂. For biotin-labeling of proteins, cells (5 x 10⁶/100 mm dish x 4) were plated and transfected with pcDNA3-Mit-APEX using PEI (Ratio of DNA:PEI = 1:3, Polysciences, PA). After 24 hrs in culture the cells were incubated with Biotin-Phenol (500 μM) for 30 min at 37°C, and then treated with 1 mM H₂O₂ for 1 min at room temperature (RT). The biotinylation reaction was quenched by replacing medium with PBS containing 10 mM Na-azide, 10 mM Na-ascorbate, and 5 mM Trolox. After biotinylation, equal numbers of cells were mixed and subjected to biochemical fractionation to collect microsomes and reduce the number of nonspecifically labeled proteins. Microsomal fractionation was performed as previously described (Nat Protoc. 2009;4(11):1582-90). In brief, HEK293 cell homogenate (supernatant) was centrifuged as following: spun at 600 x g for 5 min at 4°C (two times), at 7,000 x g for 10 min at 4°C (two times), at 10,000 x g at 4°C, 100,000 x g for 1 hr at 4°C and the pellet was collected as the microsomal fraction. The isolated microsomal fraction was lysed in RIPA buffer (20 mM Hepes, pH7.4, 150 mM NaCl, 5% glycerol, 1% NP-40, 0.5% Deoxycholic acid, 0.1% SDS, 0.5 mM EDTA, 1.5 mM MgCl₂, and protease inhibitors) and centrifuged at
13,000 rpm for 10 min at 4 °C. The cleared supernatant was incubated with streptavidin magnetic beads (ThermoFisher Scientific) for 1 hr at 4 °C. The beads were subsequently washed three times with RIPA buffer (5 min each time), RIPA + 1 M NaCl, RIPA, 2 M Urea in 10 mM Tris-HCl, pH 8.0, and finally three times with TBS. The beads were dried and stored at -80 °C before mass spectrometric analysis.

LC-MS/MS

Biotinylated targets of SILAC-encoded Mit-APEX pull-downs were digested directly on streptavidin beads and resulting tryptic peptides were sequentially purified by reverse-phase and strong cation exchange batch-mode chromatography. Peptides were separated on a 50 cm analytical column packed with 5 um Monitor TC18 beads using a 60-min gradient from 99% solvent A (0.2 M Acetic acid in water) to 35% solvent B (0.2 M Acetic acid in acetonitrile). Eluted peptides were directly injected into a Q-Exactive HF mass spectrometer (Thermo, Waltham, MA) equipped with a Digital PicoView electrospray source platform (New Objective, Woburn, MA) (Ficarro et al., 2009 PMID: 19331382). The spectrometer was operated in data dependent mode where the top 10 most abundant ions in each MS scan (resolution 240,000, isolation width = 1.5 Da) were subjected to HCD fragmentation (30% normalized collision energy). Dynamic exclusion was enabled with a repeat count of 1 and exclusion duration of 15 seconds. ESI voltage was set to 3.8 kV. The lock-mass function was enabled during MS acquisition and set to recalibrate MS1 scans using the background ion (Si(CH3)2O)6 at m/z 445.12 +/- 5 ppm.

MS spectra were converted into a Mascot generic file format (.mgf) using multiplierz scripts (Askenazi et al., 2009; Parikh et al., 2009 PMID: 19874609, PMID: 19333238). Spectra were searched using Mascot (version 2.4) against three appended databases consisting of: i) human protein sequences (downloaded from RefSeq on 07/11/2011); ii) common lab contaminants and iii) a decoy database generated by reversing the sequences from these two databases. Precursor tolerance was set to 10 ppm and product ion tolerance to 0.02 Da. Search parameters included trypsin specificity, up to 2 missed cleavages, fixed carbamidomethylation (C, +57 Da) and variable oxidation (M, +16 Da) with the SILAC quantitation method set to account for differentially labeled lysine (K, +6) and arginine (R, +10). Peptide spectral matches to the reverse database were used to limit the global False Discovery Rate to 1%. The intensity of each SILAC isotope for a given peptide feature was retrieved using custom mutliplierz scripts. The local noise intensity was used to impute isotopes missing from a peptide feature. Protein enrichment ratios were calculated by summing the SILAC intensities of their constituent peptides. Raw mass spectrometry data files have been archived at: ftp://massive.ucsd.edu/MSV000081174.

Split renilla luciferase complementation assay

For the split renilla luciferase complementation assay (22), HEK293T cells (4 x 10^5/well) were plated in a 12-well culture plate the day before transfection. Expression constructs, pcDNA3-Mit-NRluc91 and pcDNA3-CRluc92-ER were co-transfected with expression constructs encoding RTN1A, RTN2B or RTN3B using PEI (1:4 DNA:PEI ratio, Polysciences, PA). Empty control- and Reep1 expression-vector were used as negative
and positive controls respectively. The cells were re-split into 96-well plate (4 x 10^4/well, Corning; white-wall plate, product #3610) 6 hr post-transfection and further incubated for 18 hours. Twenty four hours post-transfection, Enduren live cell substrate (Promega) was added to the culture media. The cells were further incubated at CO_2 incubator for 2-3 hr and luminescence was measured by POLARstar Omega microplate reader (BMG LABTECH).

Immunofluorescent staining

After transfecting HeLa cells with pcDNA3.1-Mit-APEX and incubating for 24 hr the cells were fixed with 4% paraformaldehyde for 10 min at room temperature (RT), rinsed with PBS, and permeabilized with 0.2% triton X-100 in PBS for 5 min. After blocking in 10% goat serum in PBS, cells were incubated with primary antibodies (Sigma, mouse monoclonal anti-flag M2, 1:500; Santa Cruz Biotechnology, rabbit polyclonal anti-Tom20, 1:500) for 1 hr at RT. After PBS washing three time for 5 min each, secondary anti-mouse Alexa-fluor 488 or anti-rabbit Alexa-fluor 594 (Invitrogen), were incubated for 1 hour at RT. Images were captured with Zeiss Zen Pro software using a Hamamatsu ORCA-Flash4.0 camera attached to a Zeiss Observer Z1 inverted microscope.

Western blotting and silver staining

For western blotting, molecular weight marker (PageRuler plus prestained protein ladder, ThermoFisher Scientific) were included with each gel. Whole cell extract or fractionated protein samples in RIPA buffer were subjected to 4-15% SDS-PAGE (Bio-Rad, Mini-PROTEAN® Precast Gels) and blotted on PVDF membrane (Bio-Rad,Trans-Blot® Turbo™ Mini PVDF Transfer Packs) using Trans-Blot® Turbo™ Transfer System (Bio-Rad). The blotted membrane was soaked in 100% methanol for 30 second and dried completely. Primary antibody (Abcam, Rtn1, ab83049), IP3R-II (A-5), BAP31 (D-6); Novus Biologicals, VAP-B Antibody) was next applied for 1 hr at RT, rinsed three time for 5 min in TBST (Tris buffered saline with 0.5% Tween 20), and incubated with secondary antibody for 1 hr at RT. Membranes were rinsed in TBST containing 1 M NaCl and TBST. Blots were developed using ECL kit (SuperSignal West Pico- or Femto Chemiluminescent Substrate, Thermo Scientific) and scanned using ChemiDoc MP imaging system (Bio-Rad). For silver staining, protein eluates from streptavidin magnetic beads were separated in 4-15% SDS-PAGE gel and stained with SilverQuest™ Silver Staining Kit (Thermo Fisher Scientific) according to manufacturer’s instruction.

Functional enrichment analysis

FunRich (Functional Enrichment analysis tool) was used for analyzing SILAC/LC-MSMS results.

Statistical analysis

All statistical analyses were done in Prism software using 2-tailed unpaired Student’s t-test. All graphs are plotted as mean ± the standard error of the mean (SEM).

Acknowledgments

This work was supported by the Cotran endowment fund (Jeffrey A. Golden).
Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions

IT.C., Y.L. and G.C. designed the experiment. G.A. and J.A.M. conducted LC/MS-MS analysis. IT.C. performed all other experiments and data analysis, and wrote manuscript. J.A.G. supervised research and revised manuscript. All authors reviewed the results and approved the final version of the manuscript.

References

mitochondria through the ER unfolded protein response. *Trends Endocrinol Metab* **25**, 528-537

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Protein name</th>
<th>Gene symbol</th>
<th>Protein name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMP1</td>
<td>Aminoacyl tRNA synthase complex-interacting multifunctional protein 1</td>
<td>NLOC4</td>
<td>Nuclear protein localization protein 4 homolog</td>
</tr>
<tr>
<td>ANXA7</td>
<td>Annexin A7</td>
<td>NSDH1</td>
<td>Sterol-4-alpha-carboxylate 3-dehydrogenase</td>
</tr>
<tr>
<td>AR1IP5</td>
<td>CRA1 family protein 3</td>
<td>OSPA1</td>
<td>Oxysterol-binding protein-related protein 8</td>
</tr>
<tr>
<td>ATL2</td>
<td>Atlastin-2</td>
<td>P4HB</td>
<td>Protein disulfide-isomerase</td>
</tr>
<tr>
<td>BCAP31</td>
<td>B-cell receptor-associated protein 31</td>
<td>PGRMC1</td>
<td>Membrane-associated progesterone receptor component 1</td>
</tr>
<tr>
<td>CANX</td>
<td>Calnexin</td>
<td>PIA4</td>
<td>Protein disulfide-isomerase A4</td>
</tr>
<tr>
<td>CAST</td>
<td>Calpastatin</td>
<td>PJA2</td>
<td>E3 ubiquitin-protein ligase Praja-2</td>
</tr>
<tr>
<td>CDKAL1</td>
<td>Aminoacyl tRNA synthase methylthiol transferase</td>
<td>PKD2</td>
<td>Polycystin-2</td>
</tr>
<tr>
<td>CISD2</td>
<td>CDGH iron-sulfur domain-containing protein 2</td>
<td>PRX4</td>
<td>Peroxiredoxin-4</td>
</tr>
<tr>
<td>CLCC1</td>
<td>Chloride channel CLIC-like protein 1</td>
<td>PTPN1</td>
<td>Tyrosine-protein phosphatase non-receptor type 1</td>
</tr>
<tr>
<td>CLTC</td>
<td>Clathrin heavy chain 1</td>
<td>RAB1A</td>
<td>Ras-related protein Rab-1A</td>
</tr>
<tr>
<td>C6BP</td>
<td>Cellular nucleic acid-binding protein</td>
<td>RPS3A</td>
<td>40S ribosomal protein S3a</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
<td>RTN1</td>
<td>Reticulin-1</td>
</tr>
<tr>
<td>COPE</td>
<td>Coatomer subunit epsilon</td>
<td>RTN3</td>
<td>Reticulin-3</td>
</tr>
<tr>
<td>CPD</td>
<td>Carboxypeptidase D</td>
<td>SACM1L</td>
<td>Phosphatidylinositol-phosphatase SAC1</td>
</tr>
<tr>
<td>CYB5R3</td>
<td>NADH-cytochrome b5 reductase 3</td>
<td>SAR1B</td>
<td>GTP-binding protein SAR1B</td>
</tr>
<tr>
<td>DDBGK1</td>
<td>DDBGK domain-containing protein 1</td>
<td>SCAPER</td>
<td>S phase cyclin A-associated protein in the endoplasmic reticulum</td>
</tr>
<tr>
<td>DGLG1</td>
<td>Disks large homolog 1</td>
<td>SCG1</td>
<td>Stearoyl-CoA desaturase</td>
</tr>
<tr>
<td>EEF1B2</td>
<td>Elongation factor 1-beta</td>
<td>SEC13</td>
<td>Protein SEC13 homolog</td>
</tr>
<tr>
<td>EEF1D</td>
<td>Elongation factor 1-delta</td>
<td>SEC22B</td>
<td>Vesicle-trafficking protein SEC22B</td>
</tr>
<tr>
<td>EEF1G</td>
<td>Elongation factor 1-gamma</td>
<td>SEC23A</td>
<td>Protein transport protein Sec23A</td>
</tr>
<tr>
<td>ER2P29</td>
<td>Endoplasmic reticulum resident protein 29</td>
<td>SEC23B</td>
<td>Protein transport protein Sec23B</td>
</tr>
<tr>
<td>ER2P44</td>
<td>Endoplasmic reticulum resident protein 44</td>
<td>SEC24C</td>
<td>Protein transport protein Sec24C</td>
</tr>
<tr>
<td>ESYT1</td>
<td>Extended synaptotagmin-1</td>
<td>SEC24D</td>
<td>Protein transport protein Sec24D</td>
</tr>
<tr>
<td>FKB1P8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB1P8</td>
<td>SEC21A</td>
<td>Protein transport protein Sec21A</td>
</tr>
<tr>
<td>FKB1P10</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB1P10</td>
<td>SEC61B</td>
<td>Protein transport protein Sec61 subunit beta</td>
</tr>
<tr>
<td>FND3C3B</td>
<td>Fibronectin type III domain-containing protein 3B</td>
<td>SEC63</td>
<td>Translocation protein SEC63 homolog</td>
</tr>
<tr>
<td>HLA-C</td>
<td>HLA class I histocompatibility antigen</td>
<td>SRPK1</td>
<td>SRFS protein kinase 1</td>
</tr>
<tr>
<td>HMGCR</td>
<td>HMG-CoA reductase</td>
<td>SRPRB</td>
<td>Signal recognition particle receptor subunit beta</td>
</tr>
<tr>
<td>HNRPN</td>
<td>Heterogeneous nuclear ribonucleoprotein R</td>
<td>STAQ1</td>
<td>Double-stranded RNA-binding protein Staufen homolog 1</td>
</tr>
<tr>
<td>HSD1B12</td>
<td>Very-long-chain 3-oxoacyl-CoA reductase</td>
<td>STIM1</td>
<td>Stromal interaction molecule 1</td>
</tr>
<tr>
<td>HSP90B1</td>
<td>Endoplasmin</td>
<td>STT3B</td>
<td>Dolichyl-diphosphoglycerolipid-protein glycosyltransferase subunit STT3B</td>
</tr>
<tr>
<td>IGFB1</td>
<td>Integrin beta-1</td>
<td>SYNGRP</td>
<td>Heterogeneous nuclear ribonucleoprotein Q</td>
</tr>
<tr>
<td>ITPR1</td>
<td>Inositol 1,4,5-trisphosphate receptor type 2</td>
<td>TBL2</td>
<td>Transducin beta-like protein 2</td>
</tr>
<tr>
<td>ITPR3</td>
<td>Inositol 1,4,5-trisphosphate receptor type 3</td>
<td>TMEM43</td>
<td>Transmembrane protein 43</td>
</tr>
<tr>
<td>JAG1</td>
<td>Protein jagunal homolog 1</td>
<td>TMX1</td>
<td>Thioredoxin-related transmembrane protein 1</td>
</tr>
<tr>
<td>KN1</td>
<td>Kinectin</td>
<td>TOR1AIP1</td>
<td>Forsin-1A-interacting protein 1</td>
</tr>
<tr>
<td>LAMP2</td>
<td>Lysosome-associated membrane glycoprotein 2</td>
<td>TOR1AIP2</td>
<td>Forsin-1A-interacting protein 2</td>
</tr>
<tr>
<td>LRR5C9</td>
<td>Leucine-rich repeat-containing protein 59</td>
<td>UBQXN4</td>
<td>UBQ X-domain-containing protein 4</td>
</tr>
<tr>
<td>MTDH</td>
<td>Lysosome-associated membrane protein 1</td>
<td>USO1</td>
<td>General vesicular transport factor p115</td>
</tr>
<tr>
<td>NACA4</td>
<td>Neuroblastoma-amplified sequence</td>
<td>USP33</td>
<td>Ubiquitin carboxyl-terminal hydrolase 33</td>
</tr>
<tr>
<td>NCSTN</td>
<td>Nicastrin</td>
<td>VAPA</td>
<td>Vesicle-associated membrane protein-associated protein A</td>
</tr>
<tr>
<td>NOTCH2</td>
<td>Neurogenic locus notch homolog protein 2</td>
<td>VAPB</td>
<td>Vesicle-associated membrane protein-associated protein B</td>
</tr>
<tr>
<td>NPC1</td>
<td>Niemann-Pick C1 protein</td>
<td>VCP</td>
<td>Transitional endoplasmic reticulum ATPase</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Characterization of mitochondria-targeted APEX

(A) Scheme of proximity labeling at ER-mitochondrial contacts (B) Western blot analysis; Mit-APEX (FLAG tag) was expressed in HEK293 cells, and the blot was probed with anti-FLAG antibody. (C) Immunofluorescence images showing Mit-APEX (488 nm in Green), TOM20 (594 nm in red), and merged image (in yellow). Insert represents 3.5x digital enlargement for each image. (D) Activity of Mit-APEX. Biotinylated proteins by Mit-APEX were detected using streptavidin-HRP. (E) HEK293T cells were transfected with pcDNA-Mit-APEX and pilot biotinylation was performed using whole cell lysate. Biotinylated proteins were purified with Streptavidin-magnetic beads and the eluates were run on SDS-PAGE. Proteins blot was probed with antibodies as indicated.

Figure 2. Stable isotope labeling with amino acids in cell culture (SILAC) and purification of biotinylated proteins. (A) Experimental flow chart for SILAC and sample processing prior to LC-MS/MS. (B) Subcellular fractionation of cells after biotinylation. Proportional amount of lysate in each fraction (volume basis) was run on SDS-PAGE and probed against marker proteins as indicated. Crude Mitochondrial and nuclear fractions were separated. Western blot with Streptavidin HRP shows a different pattern of biotin labeling. (C) Silver staining of purified, biotinylated proteins.

Figure 3. GO term analysis: proteomic profiling of proteins identified by LC-MS/MS. Quantitative SILAC results from replicates were normalized by quantile method using R software. By applying 2.0-fold cut-off ratio (log base 2) in SILAC quantification, 405 proteins were isolated. Cellular component analysis using Funrich was performed with these protein lists, and Top 15 clusters (p-value < 0.05) were presented. FunRich human database was used for the enrichment analysis.

Figure 4. RETICULON1 (RTN1) enhances ER-Mitochondria contact. (A) Scheme of split renilla luciferase (Split-Rluc8) reconstitution assay. Mit-NRluc and CRluc-ER alone have no expected luciferase activity. However, when in proximity to each other they establish functional complementation, thus assembling an active luciferase that, in the presence of the Enduren live cell substrate, generates a luminescence product. The level of ER-mitochondria is measured as luminescence by catalytic conversion of Enduren substrate. (B) Western blotting of biotin-phenol labeled ER-mitochondria tethering proteins. Proteins purified using streptavidin magnetic beads after biotin-phenol labeling by Mit-Apx were run on SDS-PAGE and probed with antibodies as indicated. (C) Scheme of RETICULONs used in this study, the numbers correspond to exons. (D) RETICULONs (RTN1A, RTN2B, and RTN3B) increased Split Rluc8 activity, while RTN1C showed no increase. Empty control vector and Reep1 expression vector were used as negative and positive control respectively. ****p<0.0001 and ***p<0.001
(n=3). (E) N-terminal (1-568 a.a) deletion mutant of RTN1A (RTN1A-ΔN568) and the RTN1A N-terminus (1-568 a.a)-RTN3B fusion constructs (RTN1A-N568-RTN3B) were expressed in HEK293 cells and the Split RLuc8 activity was compared between proteins indicated. (F) RTN1A and RTN1A-ΔN568 were co-expressed with Mit-APEX in HEK293 cells, biotin-labeling and purification by streptavidin-beads were performed. The level of proximity labeling efficiency was compared by western blotting.
Figure 2

A

12C6 L-Lysine
12C6 L-Arginine

Media containing
light amino acids

13C6 L-Lysine
13C6 15N2 L-Arginine

Media containing
heavy amino acids

Transfection
(Mock or Mit-Apex)

Transfection
(Mit-Apex or Mock)

Proximity labeling by Apex

Mix 1:1 and fractionation

Microsomal fraction

Purification of
biotinylated proteins

On-bead trypsin digestion

LC-MS/MS

B

kDa

55

Tubulin (Cyto)

ATP5A (Mito)

Calnexin (ER)

TCF7L2 (Nucleus)

kDa

250

Streptavidin-HRP

C

kDa

250

Silver staining

Mock

Mit-Apex
Figure 3

The graph illustrates the distribution of genes across different cellular components, showing their p-values and percentage of the total genes. The x-axis represents the percentage of genes, while the y-axis represents the -Log10 (p-value). Key findings include:

- Stress granules: 1.2%, p < 0.001
- Heterogeneous nuclear ribonucleoprotein complex: 1.7%, p < 0.001
- Ribosome: 4.2%, p < 0.001
- Eukaryotic translation initiation factor 4F complex: 1.5%, p < 0.001
- Cytoskeleton: 7.7%, p < 0.001
- Microtubule: 4.2%, p < 0.001
- Golgi apparatus: 12.5%, p < 0.001
- Ribonucleoprotein complex: 4%, p < 0.001
- Endoplasmic reticulum: 18%, p < 0.001
- Mitochondrion: 19.2%, p < 0.001
- Cytosol: 19.5%, p < 0.001
- Lysosome: 25.4%, p < 0.001
- Nucleus: 55.4%, p < 0.001
- Exosomes: 29.4%, p < 0.001
- Centrosome: 17%, p < 0.001

These data suggest significant enrichment of genes in certain cellular components, indicating potential functional relevance.